lightning/pytorch_lightning/trainer/training_tricks.py

82 lines
3.3 KiB
Python
Raw Normal View History

2020-03-12 16:41:37 +00:00
import math
import sys
from abc import ABC, abstractmethod
import torch
from torch import Tensor
from pytorch_lightning import _logger as log
from pytorch_lightning.callbacks import GradientAccumulationScheduler
EPSILON = 1e-6
EPSILON_FP16 = 1e-5
class TrainerTrainingTricksMixin(ABC):
# this is just a summary on variables used in this abstract class,
# the proper values/initialisation should be done in child class
gradient_clip_val: ...
precision: ...
@abstractmethod
def get_model(self):
"""Warning: this is just empty shell for code implemented in other class."""
def clip_gradients(self):
# this code is a modification of torch.nn.utils.clip_grad_norm_
# with TPU support based on https://github.com/pytorch/xla/blob/master/TROUBLESHOOTING.md
if self.gradient_clip_val > 0:
model = self.get_model()
parameters = model.parameters()
max_norm = float(self.gradient_clip_val)
norm_type = float(2.0)
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
if norm_type == math.inf:
total_norm = max(p.grad.data.abs().max() for p in parameters)
else:
device = parameters[0].device
total_norm = torch.zeros([], device=device if parameters else None)
for p in parameters:
param_norm = p.grad.data.norm(norm_type) ** norm_type
total_norm.add_(param_norm)
total_norm = (total_norm ** (1. / norm_type))
eps = EPSILON_FP16 if self.precision == 16 else EPSILON
clip_coef = torch.tensor(max_norm, device=device) / (total_norm + eps)
for p in parameters:
p.grad.data.mul_(torch.where(clip_coef < 1, clip_coef, torch.tensor(1., device=device)))
def print_nan_gradients(self) -> None:
model = self.get_model()
for param in model.parameters():
2019-12-04 12:04:58 +00:00
if (param.grad is not None) and torch.isnan(param.grad.float()).any():
log.info(param, param.grad)
def detect_nan_tensors(self, loss: Tensor) -> None:
model = self.get_model()
# check if loss is nan
if not torch.isfinite(loss).all():
raise ValueError(
'The loss returned in `training_step` is nan or inf.'
)
# check if a network weight is nan
for name, param in model.named_parameters():
if not torch.isfinite(param).all():
self.print_nan_gradients()
raise ValueError(
f'Detected nan and/or inf values in `{name}`.'
' Check your forward pass for numerically unstable operations.'
)
def configure_accumulated_gradients(self, accumulate_grad_batches):
if isinstance(accumulate_grad_batches, dict):
self.accumulation_scheduler = GradientAccumulationScheduler(accumulate_grad_batches)
elif isinstance(accumulate_grad_batches, int):
schedule = {1: accumulate_grad_batches}
self.accumulation_scheduler = GradientAccumulationScheduler(schedule)
else:
raise TypeError("Gradient accumulation supports only int and dict types")