57 lines
2.1 KiB
Python
57 lines
2.1 KiB
Python
|
# Copyright The PyTorch Lightning team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import pytest
|
||
|
from torch.utils.data import BatchSampler, SequentialSampler
|
||
|
|
||
|
from pytorch_lightning import seed_everything
|
||
|
from pytorch_lightning.overrides.distributed import IndexBatchSamplerWrapper, UnrepeatedDistributedSampler
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("shuffle", [False, True])
|
||
|
def test_unrepeated_distributed_sampler(shuffle, tmpdir):
|
||
|
"""Test each rank will receive a different number of elements."""
|
||
|
|
||
|
seed_everything(42)
|
||
|
world_size = 4
|
||
|
samplers = []
|
||
|
dataset = range(103)
|
||
|
for rank in range(world_size):
|
||
|
samplers.append(UnrepeatedDistributedSampler(dataset, rank=rank, num_replicas=world_size, shuffle=shuffle))
|
||
|
|
||
|
indices = [[v for v in s] for s in samplers]
|
||
|
assert len(indices[0]) == 26
|
||
|
assert len(indices[1]) == 26
|
||
|
assert len(indices[2]) == 26
|
||
|
assert len(indices[3]) == 25
|
||
|
|
||
|
assert indices[0][-1] == 18 if shuffle else 100
|
||
|
assert indices[1][-1] == 30 if shuffle else 101
|
||
|
assert indices[2][-1] == 29 if shuffle else 102
|
||
|
assert indices[3][-1] == 35 if shuffle else 99
|
||
|
|
||
|
|
||
|
def test_index_batch_sampler(tmpdir):
|
||
|
"""Test `IndexBatchSampler` properly extracts indices."""
|
||
|
dataset = range(15)
|
||
|
sampler = SequentialSampler(dataset)
|
||
|
batch_sampler = BatchSampler(sampler, 3, False)
|
||
|
index_batch_sampler = IndexBatchSamplerWrapper(batch_sampler)
|
||
|
|
||
|
assert batch_sampler.batch_size == index_batch_sampler.batch_size
|
||
|
assert batch_sampler.drop_last == index_batch_sampler.drop_last
|
||
|
assert batch_sampler.sampler is sampler
|
||
|
|
||
|
for batch in index_batch_sampler:
|
||
|
assert index_batch_sampler.batch_indices == batch
|