2020-12-21 23:23:33 +00:00
|
|
|
from pytorch_lightning.utilities.argparse import parse_args_from_docstring
|
2020-10-26 18:08:58 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_parse_args_from_docstring_normal():
|
|
|
|
args_help = parse_args_from_docstring(
|
|
|
|
"""Constrain image dataset
|
|
|
|
|
|
|
|
Args:
|
|
|
|
root: Root directory of dataset where ``MNIST/processed/training.pt``
|
|
|
|
and ``MNIST/processed/test.pt`` exist.
|
|
|
|
train: If ``True``, creates dataset from ``training.pt``,
|
|
|
|
otherwise from ``test.pt``.
|
|
|
|
normalize: mean and std deviation of the MNIST dataset.
|
|
|
|
download: If true, downloads the dataset from the internet and
|
|
|
|
puts it in root directory. If dataset is already downloaded, it is not
|
|
|
|
downloaded again.
|
|
|
|
num_samples: number of examples per selected class/digit
|
|
|
|
digits: list selected MNIST digits/classes
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
>>> dataset = TrialMNIST(download=True)
|
|
|
|
>>> len(dataset)
|
|
|
|
300
|
|
|
|
>>> sorted(set([d.item() for d in dataset.targets]))
|
|
|
|
[0, 1, 2]
|
|
|
|
>>> torch.bincount(dataset.targets)
|
|
|
|
tensor([100, 100, 100])
|
|
|
|
"""
|
|
|
|
)
|
|
|
|
|
|
|
|
expected_args = ['root', 'train', 'normalize', 'download', 'num_samples', 'digits']
|
|
|
|
assert len(args_help.keys()) == len(expected_args)
|
|
|
|
assert all([x == y for x, y in zip(args_help.keys(), expected_args)])
|
|
|
|
assert args_help['root'] == 'Root directory of dataset where ``MNIST/processed/training.pt``' \
|
|
|
|
' and ``MNIST/processed/test.pt`` exist.'
|
|
|
|
assert args_help['normalize'] == 'mean and std deviation of the MNIST dataset.'
|
|
|
|
|
|
|
|
|
|
|
|
def test_parse_args_from_docstring_empty():
|
|
|
|
args_help = parse_args_from_docstring(
|
|
|
|
"""Constrain image dataset
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
"""
|
|
|
|
)
|
|
|
|
assert len(args_help.keys()) == 0
|