lightning/tests/tests_pytorch/trainer/test_config_validator.py

161 lines
6.1 KiB
Python
Raw Normal View History

2020-10-13 11:18:07 +00:00
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import torch
import pytorch_lightning as pl
from lightning.fabric.utilities.warnings import PossibleUserWarning
from pytorch_lightning import LightningDataModule, LightningModule, Trainer
from pytorch_lightning.demos.boring_classes import BoringModel, RandomDataset
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests_pytorch.conftest import mock_cuda_count
def test_wrong_train_setting(tmpdir):
"""Test that an error is raised when no `training_step()` is defined."""
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
with pytest.raises(MisconfigurationException, match=r"No `training_step\(\)` method defined."):
model = BoringModel()
model.training_step = None
trainer.fit(model)
def test_wrong_configure_optimizers(tmpdir):
"""Test that an error is thrown when no `configure_optimizers()` is defined."""
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
with pytest.raises(MisconfigurationException, match=r"No `configure_optimizers\(\)` method defined."):
model = BoringModel()
model.configure_optimizers = None
trainer.fit(model)
def test_fit_val_loop_config(tmpdir):
"""When either val loop or val data are missing raise warning."""
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
# no val data has val loop
with pytest.warns(UserWarning, match=r"You passed in a `val_dataloader` but have no `validation_step`"):
model = BoringModel()
model.validation_step = None
trainer.fit(model)
# has val loop but no val data
with pytest.warns(PossibleUserWarning, match=r"You defined a `validation_step` but have no `val_dataloader`"):
model = BoringModel()
model.val_dataloader = None
trainer.fit(model)
def test_eval_loop_config(tmpdir):
"""When either eval step or eval data is missing."""
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
# has test data but no val step
model = BoringModel()
model.validation_step = None
with pytest.raises(MisconfigurationException, match=r"No `validation_step\(\)` method defined"):
trainer.validate(model)
# has test data but no test step
model = BoringModel()
model.test_step = None
with pytest.raises(MisconfigurationException, match=r"No `test_step\(\)` method defined"):
trainer.test(model)
# has predict data but no predict_step
model = BoringModel()
model.predict_step = None
with pytest.raises(MisconfigurationException, match=r"`predict_step` cannot be None."):
trainer.predict(model)
# has predict data but no forward
model = BoringModel()
model.forward = None
with pytest.raises(MisconfigurationException, match=r"requires `forward` method to run."):
trainer.predict(model)
@pytest.mark.parametrize("datamodule", [False, True])
def test_trainer_predict_verify_config(tmpdir, datamodule):
class TestModel(LightningModule):
def __init__(self):
super().__init__()
self.layer = torch.nn.Linear(32, 2)
def forward(self, x):
return self.layer(x)
class TestLightningDataModule(LightningDataModule):
def __init__(self, dataloaders):
super().__init__()
self._dataloaders = dataloaders
def test_dataloader(self):
return self._dataloaders
def predict_dataloader(self):
return self._dataloaders
data = [torch.utils.data.DataLoader(RandomDataset(32, 2)), torch.utils.data.DataLoader(RandomDataset(32, 2))]
if datamodule:
data = TestLightningDataModule(data)
model = TestModel()
trainer = Trainer(default_root_dir=tmpdir)
results = trainer.predict(model, data)
assert len(results) == 2
assert results[0][0].shape == torch.Size([1, 2])
def test_trainer_manual_optimization_config():
"""Test error message when requesting Trainer features unsupported with manual optimization."""
model = BoringModel()
model.automatic_optimization = False
trainer = Trainer(gradient_clip_val=1.0)
with pytest.raises(MisconfigurationException, match="Automatic gradient clipping is not supported"):
trainer.fit(model)
trainer = Trainer(accumulate_grad_batches=2)
with pytest.raises(MisconfigurationException, match="Automatic gradient accumulation is not supported"):
trainer.fit(model)
@pytest.mark.parametrize("trainer_kwargs", [{"accelerator": "ipu"}, {"accelerator": "gpu", "strategy": "dp"}])
@pytest.mark.parametrize("hook", ["transfer_batch_to_device", "on_after_batch_transfer"])
def test_raise_exception_with_batch_transfer_hooks(monkeypatch, hook, trainer_kwargs, tmpdir):
"""Test that an exception is raised when overriding batch_transfer_hooks."""
if trainer_kwargs.get("accelerator") == "gpu":
match_pattern = rf"Overriding `{hook}` is not .* in DP mode."
mock_cuda_count(monkeypatch, 2)
elif trainer_kwargs.get("accelerator") == "ipu":
match_pattern = rf"Overriding `{hook}` is not .* with IPUs"
monkeypatch.setattr(pl.accelerators.ipu.IPUAccelerator, "is_available", lambda: True)
monkeypatch.setattr(pl.strategies.ipu, "_IPU_AVAILABLE", lambda: True)
def custom_method(self, batch, *_, **__):
batch = batch + 1
return batch
trainer = Trainer(default_root_dir=tmpdir, **trainer_kwargs)
model = BoringModel()
setattr(model, hook, custom_method)
with pytest.raises(MisconfigurationException, match=match_pattern):
trainer.fit(model)