lightning/docs/source/new-project.rst

73 lines
2.1 KiB
ReStructuredText
Raw Normal View History

Quick Start
===========
clean v2 docs (#691) * updated gitignore * Update README.md * updated gitignore * updated links in ninja file * updated docs * Update README.md * Update README.md * finished callbacks * finished callbacks * finished callbacks * fixed left menu * added callbacks to menu * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * fixing TensorBoard (#687) * flake8 * fix typo * fix tensorboardlogger drop test_tube dependence * formatting * fix tensorboard & tests * upgrade Tensorboard * test formatting separately * try to fix JIT issue * add tests for 1.4 * added direct links to docs * updated gitignore * updated links in ninja file * updated docs * finished callbacks * finished callbacks * finished callbacks * fixed left menu * added callbacks to menu * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * finished rebase * making private members * making private members * making private members * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * set auto dp if no backend * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * fixed lightning import * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * finished lightning module * finished lightning module * finished lightning module * finished lightning module * added callbacks * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * set auto dp if no backend * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * flake 8 * flake 8 Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-01-17 11:03:31 +00:00
| To start a new project define two files, a LightningModule and a Trainer file.
| To illustrate the power of Lightning and its simplicity, here's an example of a typical research flow.
Case 1: BERT
------------
clean v2 docs (#691) * updated gitignore * Update README.md * updated gitignore * updated links in ninja file * updated docs * Update README.md * Update README.md * finished callbacks * finished callbacks * finished callbacks * fixed left menu * added callbacks to menu * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * fixing TensorBoard (#687) * flake8 * fix typo * fix tensorboardlogger drop test_tube dependence * formatting * fix tensorboard & tests * upgrade Tensorboard * test formatting separately * try to fix JIT issue * add tests for 1.4 * added direct links to docs * updated gitignore * updated links in ninja file * updated docs * finished callbacks * finished callbacks * finished callbacks * fixed left menu * added callbacks to menu * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * finished rebase * making private members * making private members * making private members * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * set auto dp if no backend * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * fixed lightning import * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * finished lightning module * finished lightning module * finished lightning module * finished lightning module * added callbacks * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * set auto dp if no backend * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * flake 8 * flake 8 Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-01-17 11:03:31 +00:00
| Let's say you're working on something like BERT but want to try different ways of training or even different networks.
| You would define a single LightningModule and use flags to switch between your different ideas.
.. code-block:: python
class BERT(pl.LightningModule):
def __init__(self, model_name, task):
self.task = task
if model_name == 'transformer':
self.net = Transformer()
elif model_name == 'my_cool_version':
self.net = MyCoolVersion()
def training_step(self, batch, batch_idx):
if self.task == 'standard_bert':
# do standard bert training with self.net...
# return loss
if self.task == 'my_cool_task':
# do my own version with self.net
# return loss
Case 2: COOLER NOT BERT
-----------------------
But if you wanted to try something **completely** different, you'd define a new module for that.
.. code-block:: python
class CoolerNotBERT(pl.LightningModule):
def __init__(self):
self.net = ...
def training_step(self, batch, batch_idx):
# do some other cool task
# return loss
Rapid research flow
-------------------
Then you could do rapid research by switching between these two and using the same trainer.
.. code-block:: python
if use_bert:
model = BERT()
else:
model = CoolerNotBERT()
Enable TPU support (#868) * added tpu docs * added tpu flags * add tpu docs + init training call * amp * amp * amp * amp * optimizer step * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * fix test pkg create (#873) * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Luis Capelo <luiscape@gmail.com> * Fix segmentation example (#876) * removed torchvision model and added custom model * minor fix * Fixed relative imports issue * Fix/typo (#880) * Update greetings.yml * Update greetings.yml * Changelog (#869) * Create CHANGELOG.md * Update CHANGELOG.md * Update CHANGELOG.md * Update PULL_REQUEST_TEMPLATE.md * Update PULL_REQUEST_TEMPLATE.md * Add PR links to Version 0.6.0 in CHANGELOG.md * Add PR links for Unreleased in CHANGELOG.md * Update PULL_REQUEST_TEMPLATE.md * Fixing Function Signatures (#871) * added tpu docs * added tpu flags * add tpu docs + init training call * amp * amp * amp * amp * optimizer step * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Luis Capelo <luiscape@gmail.com> Co-authored-by: Akshay Kulkarni <akshayk.vnit@gmail.com> Co-authored-by: Ethan Harris <ewah1g13@soton.ac.uk> Co-authored-by: Shikhar Chauhan <xssChauhan@users.noreply.github.com>
2020-02-17 21:01:20 +00:00
trainer = Trainer(gpus=4, precision=16)
trainer.fit(model)
**Notice a few things about this flow:**
clean v2 docs (#691) * updated gitignore * Update README.md * updated gitignore * updated links in ninja file * updated docs * Update README.md * Update README.md * finished callbacks * finished callbacks * finished callbacks * fixed left menu * added callbacks to menu * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * fixing TensorBoard (#687) * flake8 * fix typo * fix tensorboardlogger drop test_tube dependence * formatting * fix tensorboard & tests * upgrade Tensorboard * test formatting separately * try to fix JIT issue * add tests for 1.4 * added direct links to docs * updated gitignore * updated links in ninja file * updated docs * finished callbacks * finished callbacks * finished callbacks * fixed left menu * added callbacks to menu * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * finished rebase * making private members * making private members * making private members * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * set auto dp if no backend * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * fixed lightning import * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * finished lightning module * finished lightning module * finished lightning module * finished lightning module * added callbacks * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * set auto dp if no backend * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * flake 8 * flake 8 Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-01-17 11:03:31 +00:00
1. You're writing pure PyTorch... no unnecessary abstractions or new libraries to learn.
2. You get free GPU and 16-bit support without writing any of that code in your model.
3. You also get early stopping, multi-gpu training, 16-bit and MUCH more without coding anything!