lightning/tests/test_trainer.py

437 lines
12 KiB
Python
Raw Normal View History

import os
import pytest
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import (
ModelCheckpoint,
)
from pytorch_lightning.testing import (
LightningTestModel,
LightningTestModelBase,
LightningValidationStepMixin,
LightningValidationMultipleDataloadersMixin,
LightningTestMixin,
LightningTestMultipleDataloadersMixin,
)
from pytorch_lightning.trainer import trainer_io
from pytorch_lightning.trainer.logging_mixin import TrainerLoggingMixin
import tests.utils as tutils
def test_no_val_module():
"""
Tests use case where trainer saves the model, and user loads it from tags independently
:return:
"""
tutils.reset_seed()
hparams = tutils.get_hparams()
class CurrentTestModel(LightningTestModelBase):
pass
model = CurrentTestModel(hparams)
save_dir = tutils.init_save_dir()
# logger file to get meta
logger = tutils.get_test_tube_logger(False)
trainer_options = dict(
max_nb_epochs=1,
logger=logger,
checkpoint_callback=ModelCheckpoint(save_dir)
)
# fit model
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
# training complete
assert result == 1, 'amp + ddp model failed to complete'
# save model
new_weights_path = os.path.join(save_dir, 'save_test.ckpt')
trainer.save_checkpoint(new_weights_path)
# load new model
tags_path = logger.experiment.get_data_path(logger.experiment.name, logger.experiment.version)
tags_path = os.path.join(tags_path, 'meta_tags.csv')
model_2 = LightningTestModel.load_from_metrics(weights_path=new_weights_path,
tags_csv=tags_path)
model_2.eval()
# make prediction
tutils.clear_save_dir()
def test_no_val_end_module():
"""
Tests use case where trainer saves the model, and user loads it from tags independently
:return:
"""
tutils.reset_seed()
class CurrentTestModel(LightningValidationStepMixin, LightningTestModelBase):
pass
hparams = tutils.get_hparams()
model = CurrentTestModel(hparams)
save_dir = tutils.init_save_dir()
# logger file to get meta
logger = tutils.get_test_tube_logger(False)
trainer_options = dict(
max_nb_epochs=1,
logger=logger,
checkpoint_callback=ModelCheckpoint(save_dir)
)
# fit model
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
# traning complete
assert result == 1, 'amp + ddp model failed to complete'
# save model
new_weights_path = os.path.join(save_dir, 'save_test.ckpt')
trainer.save_checkpoint(new_weights_path)
# load new model
tags_path = logger.experiment.get_data_path(logger.experiment.name, logger.experiment.version)
tags_path = os.path.join(tags_path, 'meta_tags.csv')
model_2 = LightningTestModel.load_from_metrics(weights_path=new_weights_path,
tags_csv=tags_path)
model_2.eval()
# make prediction
tutils.clear_save_dir()
def test_gradient_accumulation_scheduling():
tutils.reset_seed()
"""
Test grad accumulation by the freq of optimizer updates
"""
# test incorrect configs
with pytest.raises(IndexError):
assert Trainer(accumulate_grad_batches={0: 3, 1: 4, 4: 6})
assert Trainer(accumulate_grad_batches={-2: 3})
with pytest.raises(TypeError):
assert Trainer(accumulate_grad_batches={})
assert Trainer(accumulate_grad_batches=[[2, 3], [4, 6]])
assert Trainer(accumulate_grad_batches={1: 2, 3.: 4})
assert Trainer(accumulate_grad_batches={1: 2.5, 3: 5})
# test optimizer call freq matches scheduler
def optimizer_step(self, epoch_nb, batch_nb, optimizer, optimizer_i, second_order_closure=None):
# only test the first 12 batches in epoch
if batch_nb < 12:
if epoch_nb == 0:
# reset counter when starting epoch
if batch_nb == 0:
self.prev_called_batch_nb = 0
# use this opportunity to test once
assert self.trainer.accumulate_grad_batches == 1
assert batch_nb == self.prev_called_batch_nb
self.prev_called_batch_nb += 1
elif 1 <= epoch_nb <= 2:
# reset counter when starting epoch
if batch_nb == 1:
self.prev_called_batch_nb = 1
# use this opportunity to test once
assert self.trainer.accumulate_grad_batches == 2
assert batch_nb == self.prev_called_batch_nb
self.prev_called_batch_nb += 2
else:
if batch_nb == 3:
self.prev_called_batch_nb = 3
# use this opportunity to test once
assert self.trainer.accumulate_grad_batches == 4
assert batch_nb == self.prev_called_batch_nb
self.prev_called_batch_nb += 3
optimizer.step()
# clear gradients
optimizer.zero_grad()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
schedule = {1: 2, 3: 4}
trainer = Trainer(accumulate_grad_batches=schedule,
train_percent_check=0.1,
val_percent_check=0.1,
max_nb_epochs=4)
# for the test
trainer.optimizer_step = optimizer_step
model.prev_called_batch_nb = 0
trainer.fit(model)
def test_loading_meta_tags():
tutils.reset_seed()
from argparse import Namespace
hparams = tutils.get_hparams()
# save tags
logger = tutils.get_test_tube_logger(False)
logger.log_hyperparams(Namespace(some_str='a_str', an_int=1, a_float=2.0))
logger.log_hyperparams(hparams)
logger.save()
# load tags
tags_path = logger.experiment.get_data_path(
logger.experiment.name, logger.experiment.version
) + '/meta_tags.csv'
tags = trainer_io.load_hparams_from_tags_csv(tags_path)
assert tags.batch_size == 32 and tags.hidden_dim == 1000
tutils.clear_save_dir()
def test_dp_output_reduce():
mixin = TrainerLoggingMixin()
tutils.reset_seed()
# test identity when we have a single gpu
out = torch.rand(3, 1)
assert mixin.reduce_distributed_output(out, nb_gpus=1) is out
# average when we have multiples
assert mixin.reduce_distributed_output(out, nb_gpus=2) == out.mean()
# when we have a dict of vals
out = {
'a': out,
'b': {
'c': out
}
}
reduced = mixin.reduce_distributed_output(out, nb_gpus=3)
assert reduced['a'] == out['a']
assert reduced['b']['c'] == out['b']['c']
def test_model_checkpoint_options():
"""
Test ModelCheckpoint options
:return:
"""
def mock_save_function(filepath):
open(filepath, 'a').close()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
# simulated losses
save_dir = tutils.init_save_dir()
losses = [10, 9, 2.8, 5, 2.5]
# -----------------
# CASE K=-1 (all)
w = ModelCheckpoint(save_dir, save_top_k=-1, verbose=1)
w.save_function = mock_save_function
for i, loss in enumerate(losses):
w.on_epoch_end(i, logs={'val_loss': loss})
file_lists = set(os.listdir(save_dir))
assert len(file_lists) == len(losses), "Should save all models when save_top_k=-1"
# verify correct naming
for i in range(0, len(losses)):
assert f'_ckpt_epoch_{i}.ckpt' in file_lists
tutils.clear_save_dir()
# -----------------
# CASE K=0 (none)
w = ModelCheckpoint(save_dir, save_top_k=0, verbose=1)
w.save_function = mock_save_function
for i, loss in enumerate(losses):
w.on_epoch_end(i, logs={'val_loss': loss})
file_lists = os.listdir(save_dir)
assert len(file_lists) == 0, "Should save 0 models when save_top_k=0"
tutils.clear_save_dir()
# -----------------
# CASE K=1 (2.5, epoch 4)
w = ModelCheckpoint(save_dir, save_top_k=1, verbose=1, prefix='test_prefix')
w.save_function = mock_save_function
for i, loss in enumerate(losses):
w.on_epoch_end(i, logs={'val_loss': loss})
file_lists = set(os.listdir(save_dir))
assert len(file_lists) == 1, "Should save 1 model when save_top_k=1"
assert 'test_prefix_ckpt_epoch_4.ckpt' in file_lists
tutils.clear_save_dir()
# -----------------
# CASE K=2 (2.5 epoch 4, 2.8 epoch 2)
# make sure other files don't get deleted
w = ModelCheckpoint(save_dir, save_top_k=2, verbose=1)
open(f'{save_dir}/other_file.ckpt', 'a').close()
w.save_function = mock_save_function
for i, loss in enumerate(losses):
w.on_epoch_end(i, logs={'val_loss': loss})
file_lists = set(os.listdir(save_dir))
assert len(file_lists) == 3, 'Should save 2 model when save_top_k=2'
assert '_ckpt_epoch_4.ckpt' in file_lists
assert '_ckpt_epoch_2.ckpt' in file_lists
assert 'other_file.ckpt' in file_lists
tutils.clear_save_dir()
# -----------------
# CASE K=4 (save all 4 models)
# multiple checkpoints within same epoch
w = ModelCheckpoint(save_dir, save_top_k=4, verbose=1)
w.save_function = mock_save_function
for loss in losses:
w.on_epoch_end(0, logs={'val_loss': loss})
file_lists = set(os.listdir(save_dir))
assert len(file_lists) == 4, 'Should save all 4 models when save_top_k=4 within same epoch'
tutils.clear_save_dir()
# -----------------
# CASE K=3 (save the 2nd, 3rd, 4th model)
# multiple checkpoints within same epoch
w = ModelCheckpoint(save_dir, save_top_k=3, verbose=1)
w.save_function = mock_save_function
for loss in losses:
w.on_epoch_end(0, logs={'val_loss': loss})
file_lists = set(os.listdir(save_dir))
assert len(file_lists) == 3, 'Should save 3 models when save_top_k=3'
assert '_ckpt_epoch_0_v2.ckpt' in file_lists
assert '_ckpt_epoch_0_v1.ckpt' in file_lists
assert '_ckpt_epoch_0.ckpt' in file_lists
tutils.clear_save_dir()
def test_model_freeze_unfreeze():
tutils.reset_seed()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
model.freeze()
model.unfreeze()
def test_multiple_val_dataloader():
"""
Verify multiple val_dataloader
:return:
"""
tutils.reset_seed()
class CurrentTestModel(
LightningValidationMultipleDataloadersMixin,
LightningTestModelBase
):
pass
hparams = tutils.get_hparams()
model = CurrentTestModel(hparams)
# logger file to get meta
trainer_options = dict(
max_nb_epochs=1,
val_percent_check=0.1,
train_percent_check=1.0,
)
# fit model
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
# verify training completed
assert result == 1
# verify there are 2 val loaders
assert len(trainer.get_val_dataloaders()) == 2, \
'Multiple val_dataloaders not initiated properly'
# make sure predictions are good for each val set
for dataloader in trainer.get_val_dataloaders():
tutils.run_prediction(dataloader, trainer.model)
def test_multiple_test_dataloader():
"""
Verify multiple test_dataloader
:return:
"""
tutils.reset_seed()
class CurrentTestModel(
LightningTestMultipleDataloadersMixin,
LightningTestModelBase
):
pass
hparams = tutils.get_hparams()
model = CurrentTestModel(hparams)
# logger file to get meta
trainer_options = dict(
max_nb_epochs=1,
val_percent_check=0.1,
train_percent_check=0.1,
)
# fit model
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
# verify there are 2 val loaders
assert len(trainer.get_test_dataloaders()) == 2, \
'Multiple test_dataloaders not initiated properly'
# make sure predictions are good for each test set
for dataloader in trainer.get_test_dataloaders():
tutils.run_prediction(dataloader, trainer.model)
# run the test method
trainer.test()
if __name__ == '__main__':
pytest.main([__file__])