lightning/pl_examples/loop_examples/yielding_training_step.py

171 lines
8.7 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from functools import partial
from typing import Generator
import torch
from pl_examples.domain_templates.generative_adversarial_net import GAN as GANTemplate
from pl_examples.domain_templates.generative_adversarial_net import MNISTDataModule
from pytorch_lightning import Trainer
from pytorch_lightning.loops import OptimizerLoop
from pytorch_lightning.loops.optimization.optimizer_loop import ClosureResult
from pytorch_lightning.loops.utilities import _build_training_step_kwargs
from pytorch_lightning.utilities.exceptions import MisconfigurationException
#############################################################################################
# Yield Loop #
# #
# This example shows an implementation of a custom loop that changes how the #
# `LightningModule.training_step` behaves. In particular, this custom "Yield" loop will #
# enable the `training_step` to yield like a Python generator, retaining the values #
# of local variables for subsequent calls. This can result in much cleaner and elegant #
# code when dealing with multiple optimizers (automatic optimization). #
# #
# Learn more about the loop structure from the documentation: #
# https://pytorch-lightning.readthedocs.io/en/latest/extensions/loops.html #
#############################################################################################
#############################################################################################
# Step 1 / 3: Implement a custom OptimizerLoop #
# #
# The `training_step` gets called in the #
# `pytorch_lightning.loops.optimization.OptimizerLoop`. To make it into a Python generator, #
# we need to override the place where it gets called. #
#############################################################################################
class YieldLoop(OptimizerLoop):
def __init__(self):
super().__init__()
self._generator = None
def connect(self, **kwargs):
raise NotImplementedError(f"{self.__class__.__name__} does not connect any child loops.")
def on_run_start(self, batch, optimizers, batch_idx):
super().on_run_start(batch, optimizers, batch_idx)
if not inspect.isgeneratorfunction(self.trainer.lightning_module.training_step):
raise MisconfigurationException("The `LightningModule` does not yield anything in the `training_step`.")
assert self.trainer.lightning_module.automatic_optimization
# We request the generator once and save it for later
# so we can call next() on it.
self._generator = self._get_generator(batch, batch_idx, opt_idx=0)
def _make_step_fn(self, split_batch, batch_idx, opt_idx):
return partial(self._training_step, self._generator)
def _get_generator(self, split_batch, batch_idx, opt_idx):
step_kwargs = _build_training_step_kwargs(
self.trainer.lightning_module, self.trainer.optimizers, split_batch, batch_idx, opt_idx, hiddens=None
)
# Here we are basically calling `lightning_module.training_step()`
# and this returns a generator! The `training_step` is handled by the
# accelerator to enable distributed training.
return self.trainer.training_type_plugin.training_step(*step_kwargs.values())
def _training_step(self, generator):
# required for logging
self.trainer.lightning_module._current_fx_name = "training_step"
# Here, instead of calling `lightning_module.training_step()`
# we call next() on the generator!
training_step_output = next(generator)
self.trainer.training_type_plugin.post_training_step()
model_output = self.trainer._call_lightning_module_hook("training_step_end", training_step_output)
ttp_output = self.trainer._call_ttp_hook("training_step_end", training_step_output)
training_step_output = ttp_output if model_output is None else model_output
# The closure result takes care of properly detaching the loss for logging and peforms
# some additional checks that the output format is correct.
result = ClosureResult.from_training_step_output(training_step_output, self.trainer.accumulate_grad_batches)
return result
#############################################################################################
# Step 2 / 3: Implement a model using the new yield mechanism #
# #
# We can now implement a model that defines the `training_step` using "yield" statements. #
# We choose a generative adversarial network (GAN) because it alternates between two #
# optimizers updating the model parameters. In the first step we compute the loss of the #
# first network (coincidentally also named "generator") and yield the loss. In the second #
# step we compute the loss of the second network (the "discriminator") and yield again. #
# The nice property of this yield approach is that we can reuse variables that we computed #
# earlier. If this was a regular Lightning `training_step`, we would have to recompute the #
# output of the first network. #
#############################################################################################
class GAN(GANTemplate):
# This training_step method is now a Python generator
def training_step(self, batch, batch_idx, optimizer_idx=0) -> Generator:
imgs, _ = batch
z = torch.randn(imgs.shape[0], self.hparams.latent_dim)
z = z.type_as(imgs)
# Here, we compute the generator output once and reuse it later.
# It gets saved when we yield from the training_step.
# The output then gets re-used again in the discriminator update.
generator_output = self(z)
# train generator
real_labels = torch.ones(imgs.size(0), 1)
real_labels = real_labels.type_as(imgs)
g_loss = self.adversarial_loss(self.discriminator(generator_output), real_labels)
self.log("g_loss", g_loss)
# Yield instead of return: This makes the training_step a Python generator.
# Once we call it again, it will continue the execution with the block below
yield g_loss
# train discriminator
real_labels = torch.ones(imgs.size(0), 1)
real_labels = real_labels.type_as(imgs)
real_loss = self.adversarial_loss(self.discriminator(imgs), real_labels)
fake_labels = torch.zeros(imgs.size(0), 1)
fake_labels = fake_labels.type_as(imgs)
# We make use again of the generator_output
fake_loss = self.adversarial_loss(self.discriminator(generator_output.detach()), fake_labels)
d_loss = (real_loss + fake_loss) / 2
self.log("d_loss", d_loss)
yield d_loss
#############################################################################################
# Step 3 / 3: Connect the loop to the Trainer #
# #
# Finally, attach the loop to the `Trainer`. Here, we modified the `AutomaticOptimization` #
# loop which is a subloop of the `TrainingBatchLoop`. We use `.connect()` to attach it. #
#############################################################################################
if __name__ == "__main__":
model = GAN()
dm = MNISTDataModule()
trainer = Trainer()
# Connect the new loop
# YieldLoop now replaces the previous optimizer loop
trainer.fit_loop.epoch_loop.batch_loop.connect(optimizer_loop=YieldLoop())
# fit() will now use the new loop!
trainer.fit(model, dm)