import os
from unittest import mock
import pytest
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.plugins import ApexMixedPrecisionPlugin
from pytorch_lightning.utilities import _APEX_AVAILABLE
from tests.helpers.boring_model import BoringModel
@pytest.mark.skipif(not _APEX_AVAILABLE, reason="test requires apex")
@mock.patch.dict(
os.environ, {
"CUDA_VISIBLE_DEVICES": "0,1",
"SLURM_NTASKS": "2",
"SLURM_JOB_NAME": "SOME_NAME",
"SLURM_NODEID": "0",
"LOCAL_RANK": "0",
"SLURM_LOCALID": "0"
}
)
@mock.patch('torch.cuda.device_count', return_value=2)
@pytest.mark.parametrize(
['ddp_backend', 'gpus', 'num_processes'],
[('ddp_cpu', None, 2), ('ddp', 2, 0), ('ddp2', 2, 0), ('ddp_spawn', 2, 0)],
def test_amp_choice_default_ddp_cpu(tmpdir, ddp_backend, gpus, num_processes):
class CB(Callback):
def on_fit_start(self, trainer, pl_module):
assert isinstance(trainer.precision_plugin, ApexMixedPrecisionPlugin)
raise SystemExit()
model = BoringModel()
trainer = Trainer(
fast_dev_run=True,
precision=16,
amp_backend='apex',
gpus=gpus,
num_processes=num_processes,
accelerator=ddp_backend,
callbacks=[CB()],
with pytest.raises(SystemExit):
trainer.fit(model)
def test_amp_choice_custom_ddp_cpu(tmpdir, ddp_backend, gpus, num_processes):
class MyApexPlugin(ApexMixedPrecisionPlugin):
pass
assert isinstance(trainer.precision_plugin, MyApexPlugin)
plugins=[MyApexPlugin(amp_level="O2")],