lightning/tests/trainer/test_train_loop_flow_scalar...

187 lines
5.1 KiB
Python
Raw Normal View History

"""
Tests to ensure that the training loop works with a dict (1.0)
"""
from pytorch_lightning import Trainer
from tests.base.deterministic_model import DeterministicModel
import os
import torch
def test__training_step__flow_scalar(tmpdir):
"""
Tests that only training_step can be used
"""
os.environ['PL_DEV_DEBUG'] = '1'
class TestModel(DeterministicModel):
def training_step(self, batch, batch_idx):
acc = self.step(batch, batch_idx)
acc = acc + batch_idx
self.training_step_called = True
return acc
def backward(self, trainer, loss, optimizer, optimizer_idx):
loss.backward()
model = TestModel()
model.val_dataloader = None
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=2,
row_log_interval=1,
weights_summary=None,
)
trainer.fit(model)
# make sure correct steps were called
assert model.training_step_called
assert not model.training_step_end_called
assert not model.training_epoch_end_called
def test__training_step__tr_step_end__flow_scalar(tmpdir):
"""
Tests that only training_step can be used
"""
os.environ['PL_DEV_DEBUG'] = '1'
class TestModel(DeterministicModel):
def training_step(self, batch, batch_idx):
acc = self.step(batch, batch_idx)
acc = acc + batch_idx
self.training_step_called = True
self.out = acc
return acc
def training_step_end(self, tr_step_output):
assert self.out == tr_step_output
assert self.count_num_graphs({'loss': tr_step_output}) == 1
self.training_step_end_called = True
return tr_step_output
def backward(self, trainer, loss, optimizer, optimizer_idx):
loss.backward()
model = TestModel()
model.val_dataloader = None
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=2,
row_log_interval=1,
weights_summary=None,
)
trainer.fit(model)
# make sure correct steps were called
assert model.training_step_called
assert model.training_step_end_called
assert not model.training_epoch_end_called
def test__training_step__epoch_end__flow_scalar(tmpdir):
"""
Tests that only training_step can be used
"""
os.environ['PL_DEV_DEBUG'] = '1'
class TestModel(DeterministicModel):
def training_step(self, batch, batch_idx):
acc = self.step(batch, batch_idx)
acc = acc + batch_idx
self.training_step_called = True
return acc
def training_epoch_end(self, outputs):
self.training_epoch_end_called = True
# verify we saw the current num of batches
assert len(outputs) == 2
for b in outputs:
# time = 1
assert len(b) == 1
assert 'loss' in b
assert isinstance(b, dict)
def backward(self, trainer, loss, optimizer, optimizer_idx):
loss.backward()
model = TestModel()
model.val_dataloader = None
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=2,
row_log_interval=1,
weights_summary=None,
)
trainer.fit(model)
# make sure correct steps were called
assert model.training_step_called
assert not model.training_step_end_called
assert model.training_epoch_end_called
def test__training_step__step_end__epoch_end__flow_scalar(tmpdir):
"""
Tests that only training_step can be used
"""
os.environ['PL_DEV_DEBUG'] = '1'
class TestModel(DeterministicModel):
def training_step(self, batch, batch_idx):
acc = self.step(batch, batch_idx)
acc = acc + batch_idx
self.training_step_called = True
return acc
def training_step_end(self, tr_step_output):
assert isinstance(tr_step_output, torch.Tensor)
assert self.count_num_graphs({'loss': tr_step_output}) == 1
self.training_step_end_called = True
return tr_step_output
def training_epoch_end(self, outputs):
self.training_epoch_end_called = True
# verify we saw the current num of batches
assert len(outputs) == 2
for b in outputs:
# time = 1
assert len(b) == 1
assert 'loss' in b
assert isinstance(b, dict)
def backward(self, trainer, loss, optimizer, optimizer_idx):
loss.backward()
model = TestModel()
model.val_dataloader = None
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=2,
row_log_interval=1,
weights_summary=None,
)
trainer.fit(model)
# make sure correct steps were called
assert model.training_step_called
assert model.training_step_end_called
assert model.training_epoch_end_called