187 lines
5.1 KiB
Python
187 lines
5.1 KiB
Python
![]() |
"""
|
||
|
Tests to ensure that the training loop works with a dict (1.0)
|
||
|
"""
|
||
|
from pytorch_lightning import Trainer
|
||
|
from tests.base.deterministic_model import DeterministicModel
|
||
|
import os
|
||
|
import torch
|
||
|
|
||
|
|
||
|
def test__training_step__flow_scalar(tmpdir):
|
||
|
"""
|
||
|
Tests that only training_step can be used
|
||
|
"""
|
||
|
os.environ['PL_DEV_DEBUG'] = '1'
|
||
|
|
||
|
class TestModel(DeterministicModel):
|
||
|
def training_step(self, batch, batch_idx):
|
||
|
acc = self.step(batch, batch_idx)
|
||
|
acc = acc + batch_idx
|
||
|
self.training_step_called = True
|
||
|
return acc
|
||
|
|
||
|
def backward(self, trainer, loss, optimizer, optimizer_idx):
|
||
|
loss.backward()
|
||
|
|
||
|
model = TestModel()
|
||
|
model.val_dataloader = None
|
||
|
|
||
|
trainer = Trainer(
|
||
|
default_root_dir=tmpdir,
|
||
|
limit_train_batches=2,
|
||
|
limit_val_batches=2,
|
||
|
max_epochs=2,
|
||
|
row_log_interval=1,
|
||
|
weights_summary=None,
|
||
|
)
|
||
|
trainer.fit(model)
|
||
|
|
||
|
# make sure correct steps were called
|
||
|
assert model.training_step_called
|
||
|
assert not model.training_step_end_called
|
||
|
assert not model.training_epoch_end_called
|
||
|
|
||
|
|
||
|
def test__training_step__tr_step_end__flow_scalar(tmpdir):
|
||
|
"""
|
||
|
Tests that only training_step can be used
|
||
|
"""
|
||
|
os.environ['PL_DEV_DEBUG'] = '1'
|
||
|
|
||
|
class TestModel(DeterministicModel):
|
||
|
def training_step(self, batch, batch_idx):
|
||
|
acc = self.step(batch, batch_idx)
|
||
|
acc = acc + batch_idx
|
||
|
self.training_step_called = True
|
||
|
self.out = acc
|
||
|
return acc
|
||
|
|
||
|
def training_step_end(self, tr_step_output):
|
||
|
assert self.out == tr_step_output
|
||
|
assert self.count_num_graphs({'loss': tr_step_output}) == 1
|
||
|
self.training_step_end_called = True
|
||
|
return tr_step_output
|
||
|
|
||
|
def backward(self, trainer, loss, optimizer, optimizer_idx):
|
||
|
loss.backward()
|
||
|
|
||
|
model = TestModel()
|
||
|
model.val_dataloader = None
|
||
|
|
||
|
trainer = Trainer(
|
||
|
default_root_dir=tmpdir,
|
||
|
limit_train_batches=2,
|
||
|
limit_val_batches=2,
|
||
|
max_epochs=2,
|
||
|
row_log_interval=1,
|
||
|
weights_summary=None,
|
||
|
)
|
||
|
trainer.fit(model)
|
||
|
|
||
|
# make sure correct steps were called
|
||
|
assert model.training_step_called
|
||
|
assert model.training_step_end_called
|
||
|
assert not model.training_epoch_end_called
|
||
|
|
||
|
|
||
|
def test__training_step__epoch_end__flow_scalar(tmpdir):
|
||
|
"""
|
||
|
Tests that only training_step can be used
|
||
|
"""
|
||
|
os.environ['PL_DEV_DEBUG'] = '1'
|
||
|
|
||
|
class TestModel(DeterministicModel):
|
||
|
def training_step(self, batch, batch_idx):
|
||
|
acc = self.step(batch, batch_idx)
|
||
|
acc = acc + batch_idx
|
||
|
|
||
|
self.training_step_called = True
|
||
|
return acc
|
||
|
|
||
|
def training_epoch_end(self, outputs):
|
||
|
self.training_epoch_end_called = True
|
||
|
|
||
|
# verify we saw the current num of batches
|
||
|
assert len(outputs) == 2
|
||
|
|
||
|
for b in outputs:
|
||
|
# time = 1
|
||
|
assert len(b) == 1
|
||
|
assert 'loss' in b
|
||
|
assert isinstance(b, dict)
|
||
|
|
||
|
def backward(self, trainer, loss, optimizer, optimizer_idx):
|
||
|
loss.backward()
|
||
|
|
||
|
model = TestModel()
|
||
|
model.val_dataloader = None
|
||
|
|
||
|
trainer = Trainer(
|
||
|
default_root_dir=tmpdir,
|
||
|
limit_train_batches=2,
|
||
|
limit_val_batches=2,
|
||
|
max_epochs=2,
|
||
|
row_log_interval=1,
|
||
|
weights_summary=None,
|
||
|
)
|
||
|
trainer.fit(model)
|
||
|
|
||
|
# make sure correct steps were called
|
||
|
assert model.training_step_called
|
||
|
assert not model.training_step_end_called
|
||
|
assert model.training_epoch_end_called
|
||
|
|
||
|
|
||
|
def test__training_step__step_end__epoch_end__flow_scalar(tmpdir):
|
||
|
"""
|
||
|
Tests that only training_step can be used
|
||
|
"""
|
||
|
os.environ['PL_DEV_DEBUG'] = '1'
|
||
|
|
||
|
class TestModel(DeterministicModel):
|
||
|
def training_step(self, batch, batch_idx):
|
||
|
acc = self.step(batch, batch_idx)
|
||
|
acc = acc + batch_idx
|
||
|
|
||
|
self.training_step_called = True
|
||
|
return acc
|
||
|
|
||
|
def training_step_end(self, tr_step_output):
|
||
|
assert isinstance(tr_step_output, torch.Tensor)
|
||
|
assert self.count_num_graphs({'loss': tr_step_output}) == 1
|
||
|
self.training_step_end_called = True
|
||
|
return tr_step_output
|
||
|
|
||
|
def training_epoch_end(self, outputs):
|
||
|
self.training_epoch_end_called = True
|
||
|
|
||
|
# verify we saw the current num of batches
|
||
|
assert len(outputs) == 2
|
||
|
|
||
|
for b in outputs:
|
||
|
# time = 1
|
||
|
assert len(b) == 1
|
||
|
assert 'loss' in b
|
||
|
assert isinstance(b, dict)
|
||
|
|
||
|
def backward(self, trainer, loss, optimizer, optimizer_idx):
|
||
|
loss.backward()
|
||
|
|
||
|
model = TestModel()
|
||
|
model.val_dataloader = None
|
||
|
|
||
|
trainer = Trainer(
|
||
|
default_root_dir=tmpdir,
|
||
|
limit_train_batches=2,
|
||
|
limit_val_batches=2,
|
||
|
max_epochs=2,
|
||
|
row_log_interval=1,
|
||
|
weights_summary=None,
|
||
|
)
|
||
|
trainer.fit(model)
|
||
|
|
||
|
# make sure correct steps were called
|
||
|
assert model.training_step_called
|
||
|
assert model.training_step_end_called
|
||
|
assert model.training_epoch_end_called
|