2022-10-08 15:42:21 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
2022-10-04 22:54:14 +00:00
|
|
|
import os
|
2022-09-30 07:57:18 +00:00
|
|
|
from functools import partial
|
2022-10-04 22:54:14 +00:00
|
|
|
from unittest import mock
|
2022-10-08 15:42:21 +00:00
|
|
|
from unittest.mock import Mock
|
2022-09-30 07:57:18 +00:00
|
|
|
|
|
|
|
import pytest
|
2022-12-08 07:08:04 +00:00
|
|
|
import torch
|
2023-01-04 15:57:18 +00:00
|
|
|
from tests_fabric.helpers.dataloaders import CustomNotImplementedErrorDataloader
|
|
|
|
from tests_fabric.helpers.models import RandomDataset, RandomIterableDataset
|
|
|
|
from tests_fabric.helpers.runif import RunIf
|
2022-10-08 15:42:21 +00:00
|
|
|
from torch.utils.data import DataLoader
|
2022-09-30 07:57:18 +00:00
|
|
|
|
2023-02-01 20:34:38 +00:00
|
|
|
from lightning.fabric.accelerators import TPUAccelerator
|
|
|
|
from lightning.fabric.strategies import XLAStrategy
|
|
|
|
from lightning.fabric.strategies.launchers.xla import _XLALauncher
|
|
|
|
from lightning.fabric.utilities.distributed import ReduceOp
|
2022-09-30 07:57:18 +00:00
|
|
|
|
|
|
|
|
|
|
|
def wrap_launch_function(fn, strategy, *args, **kwargs):
|
|
|
|
# the launcher does not manage this automatically. explanation available in:
|
|
|
|
# https://github.com/Lightning-AI/lightning/pull/14926#discussion_r982976718
|
|
|
|
strategy.setup_environment()
|
|
|
|
return fn(*args, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
def xla_launch(fn):
|
|
|
|
# TODO: the accelerator should be optional to just launch processes, but this requires lazy initialization
|
|
|
|
accelerator = TPUAccelerator()
|
|
|
|
strategy = XLAStrategy(accelerator=accelerator, parallel_devices=list(range(8)))
|
|
|
|
launcher = _XLALauncher(strategy=strategy)
|
|
|
|
wrapped = partial(wrap_launch_function, fn, strategy)
|
|
|
|
return launcher.launch(wrapped, strategy)
|
|
|
|
|
|
|
|
|
|
|
|
def broadcast_on_tpu_fn(strategy):
|
|
|
|
obj = ("ver_0.5", "logger_name", strategy.local_rank)
|
|
|
|
result = strategy.broadcast(obj)
|
|
|
|
assert result == ("ver_0.5", "logger_name", 0)
|
|
|
|
|
|
|
|
|
|
|
|
@RunIf(tpu=True)
|
2022-10-04 22:54:14 +00:00
|
|
|
@mock.patch.dict(os.environ, os.environ.copy(), clear=True)
|
2022-09-30 07:57:18 +00:00
|
|
|
def test_broadcast_on_tpu():
|
|
|
|
"""Checks if an object from the main process is broadcasted to other processes correctly."""
|
|
|
|
xla_launch(broadcast_on_tpu_fn)
|
|
|
|
|
|
|
|
|
|
|
|
def tpu_reduce_fn(strategy):
|
|
|
|
with pytest.raises(ValueError, match="XLAStrategy only supports"):
|
2023-01-16 13:17:45 +00:00
|
|
|
strategy.all_reduce(1, reduce_op="undefined")
|
2022-09-30 07:57:18 +00:00
|
|
|
|
|
|
|
with pytest.raises(ValueError, match="XLAStrategy only supports"):
|
2023-01-16 13:17:45 +00:00
|
|
|
strategy.all_reduce(1, reduce_op=ReduceOp.MAX)
|
2022-09-30 07:57:18 +00:00
|
|
|
|
|
|
|
# it is faster to loop over here than to parameterize the test
|
|
|
|
for reduce_op in ("mean", "AVG", "sum", ReduceOp.SUM):
|
2023-01-16 13:17:45 +00:00
|
|
|
result = strategy.all_reduce(1, reduce_op=reduce_op)
|
2022-09-30 07:57:18 +00:00
|
|
|
if isinstance(reduce_op, str) and reduce_op.lower() in ("mean", "avg"):
|
|
|
|
assert result.item() == 1
|
|
|
|
else:
|
|
|
|
assert result.item() == 8
|
|
|
|
|
|
|
|
|
|
|
|
@RunIf(tpu=True)
|
2022-10-04 22:54:14 +00:00
|
|
|
@mock.patch.dict(os.environ, os.environ.copy(), clear=True)
|
2022-09-30 07:57:18 +00:00
|
|
|
def test_tpu_reduce():
|
2023-01-16 13:17:45 +00:00
|
|
|
"""Test tpu spawn all_reduce operation."""
|
2022-09-30 07:57:18 +00:00
|
|
|
xla_launch(tpu_reduce_fn)
|
2022-10-08 15:42:21 +00:00
|
|
|
|
|
|
|
|
|
|
|
@RunIf(tpu=True)
|
2023-02-01 20:34:38 +00:00
|
|
|
@mock.patch("lightning.fabric.strategies.xla.XLAStrategy.root_device")
|
2022-10-08 15:42:21 +00:00
|
|
|
def test_xla_mp_device_dataloader_attribute(_, monkeypatch):
|
|
|
|
import torch_xla.distributed.parallel_loader as parallel_loader
|
|
|
|
|
|
|
|
mp_loader_mock = Mock()
|
|
|
|
monkeypatch.setattr(parallel_loader, "MpDeviceLoader", mp_loader_mock)
|
|
|
|
|
|
|
|
dataset = RandomDataset(32, 64)
|
|
|
|
dataloader = DataLoader(dataset)
|
|
|
|
strategy = XLAStrategy()
|
|
|
|
processed_dataloader = strategy.process_dataloader(dataloader)
|
|
|
|
mp_loader_mock.assert_called_with(dataloader, strategy.root_device)
|
|
|
|
assert processed_dataloader.dataset == processed_dataloader._loader.dataset
|
|
|
|
|
|
|
|
|
|
|
|
_loader = DataLoader(RandomDataset(32, 64))
|
|
|
|
_iterable_loader = DataLoader(RandomIterableDataset(32, 64))
|
|
|
|
_loader_no_len = CustomNotImplementedErrorDataloader(_loader)
|
|
|
|
|
|
|
|
|
|
|
|
@RunIf(tpu=True)
|
|
|
|
@pytest.mark.parametrize("dataloader", [None, _iterable_loader, _loader_no_len])
|
2023-02-01 20:34:38 +00:00
|
|
|
@mock.patch("lightning.fabric.strategies.xla.XLAStrategy.root_device")
|
2022-10-08 15:42:21 +00:00
|
|
|
def test_xla_validate_unsupported_iterable_dataloaders(_, dataloader, monkeypatch):
|
|
|
|
"""Test that the XLAStrategy validates against dataloaders with no length defined on datasets (iterable
|
|
|
|
dataset)."""
|
|
|
|
import torch_xla.distributed.parallel_loader as parallel_loader
|
|
|
|
|
|
|
|
monkeypatch.setattr(parallel_loader, "MpDeviceLoader", Mock())
|
|
|
|
|
|
|
|
with pytest.raises(TypeError, match="TPUs do not currently support"):
|
|
|
|
XLAStrategy().process_dataloader(dataloader)
|
2022-12-08 07:08:04 +00:00
|
|
|
|
|
|
|
|
|
|
|
def tpu_all_gather_fn(strategy):
|
|
|
|
for sync_grads in [True, False]:
|
|
|
|
tensor = torch.tensor(1.0, device=strategy.root_device, requires_grad=True)
|
|
|
|
result = strategy.all_gather(tensor, sync_grads=sync_grads)
|
|
|
|
summed = result.sum()
|
|
|
|
assert torch.equal(summed, torch.tensor(8.0))
|
|
|
|
summed.backward()
|
|
|
|
if sync_grads:
|
|
|
|
assert torch.equal(tensor.grad, torch.tensor(1.0))
|
|
|
|
else:
|
|
|
|
# As gradients are not synced, the original tensor will not have gradients.
|
|
|
|
assert tensor.grad is None
|
|
|
|
|
|
|
|
|
|
|
|
@RunIf(tpu=True)
|
|
|
|
@mock.patch.dict(os.environ, os.environ.copy(), clear=True)
|
|
|
|
def test_tpu_all_gather():
|
|
|
|
"""Test the all_gather operation on TPU."""
|
|
|
|
xla_launch(tpu_all_gather_fn)
|