lightning/tests/base/model_optimizers.py

72 lines
2.9 KiB
Python
Raw Normal View History

from abc import ABC
from torch import optim
class ConfigureOptimizersPool(ABC):
def configure_optimizers(self):
"""
return whatever optimizers we want here.
:return: list of optimizers
"""
optimizer = optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
return optimizer
def configure_optimizers__empty(self):
return None
def configure_optimizers__lbfgs(self):
"""
return whatever optimizers we want here.
:return: list of optimizers
"""
optimizer = optim.LBFGS(self.parameters(), lr=self.hparams.learning_rate)
return optimizer
def configure_optimizers__multiple_optimizers(self):
"""
return whatever optimizers we want here.
:return: list of optimizers
"""
# try no scheduler for this model (testing purposes)
optimizer1 = optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
optimizer2 = optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
return optimizer1, optimizer2
def configure_optimizers__single_scheduler(self):
optimizer = optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.1)
return [optimizer], [lr_scheduler]
def configure_optimizers__multiple_schedulers(self):
optimizer1 = optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
optimizer2 = optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
lr_scheduler1 = optim.lr_scheduler.StepLR(optimizer1, 1, gamma=0.1)
lr_scheduler2 = optim.lr_scheduler.StepLR(optimizer2, 1, gamma=0.1)
return [optimizer1, optimizer2], [lr_scheduler1, lr_scheduler2]
def configure_optimizers__mixed_scheduling(self):
optimizer1 = optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
optimizer2 = optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
lr_scheduler1 = optim.lr_scheduler.StepLR(optimizer1, 4, gamma=0.1)
lr_scheduler2 = optim.lr_scheduler.StepLR(optimizer2, 1, gamma=0.1)
return [optimizer1, optimizer2], \
[{'scheduler': lr_scheduler1, 'interval': 'step'}, lr_scheduler2]
def configure_optimizers__reduce_lr_on_plateau(self):
optimizer = optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer)
return [optimizer], [lr_scheduler]
def configure_optimizers__param_groups(self):
param_groups = [
{'params': list(self.parameters())[:2], 'lr': self.hparams.learning_rate * 0.1},
{'params': list(self.parameters())[2:], 'lr': self.hparams.learning_rate}
]
optimizer = optim.Adam(param_groups)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.1)
return [optimizer], [lr_scheduler]