lightning/pl_examples/models/lightning_template.py

173 lines
6.5 KiB
Python
Raw Normal View History

2019-08-04 18:19:23 +00:00
"""
Example template for defining a system.
2019-08-04 18:19:23 +00:00
"""
import os
from argparse import ArgumentParser
2019-06-27 15:04:02 +00:00
from collections import OrderedDict
2019-06-27 15:04:02 +00:00
import torch
import torch.nn as nn
2019-06-27 15:04:02 +00:00
import torch.nn.functional as F
import torchvision.transforms as transforms
2019-06-27 15:04:02 +00:00
from torch import optim
2019-07-08 22:02:41 +00:00
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
2019-06-27 15:04:02 +00:00
from pytorch_lightning import _logger as log
resolving documentation warnings (#833) * add more underline * fix LightningMudule import error * remove unneeded blank line * escape asterisk to fix inline emphasis warning * add PULL_REQUEST_TEMPLATE.md * add __init__.py and import imagenet_example * fix duplicate label * add noindex option to fix duplicate object warnings * remove unexpected indent * refer explicit LightningModule * fix minor bug * refer EarlyStopping explicitly * restore exclude patterns * change the way how to refer class * remove unused import * update badges & drop Travis/Appveyor (#826) * drop Travis * drop Appveyor * update badges * fix missing PyPI images & CI badges (#853) * docs - anchor links (#848) * docs - add links * add desc. * add Greeting action (#843) * add Greeting action * Update greetings.yml Co-authored-by: William Falcon <waf2107@columbia.edu> * add pep8speaks (#842) * advanced profiler describe + cleaned up tests (#837) * add py36 compatibility * add test case to capture previous bug * clean up tests * clean up tests * Update lightning_module_template.py * Update lightning.py * respond lint issues * break long line * break more lines * checkout conflicting files from master * shorten url * checkout from upstream/master * remove trailing whitespaces * remove unused import LightningModule * fix sphinx bot warnings * Apply suggestions from code review just to trigger CI * Update .github/workflows/greetings.yml Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu> Co-authored-by: Jeremy Jordan <13970565+jeremyjordan@users.noreply.github.com>
2020-02-27 21:07:51 +00:00
from pytorch_lightning.core import LightningModule
2019-06-27 15:04:02 +00:00
resolving documentation warnings (#833) * add more underline * fix LightningMudule import error * remove unneeded blank line * escape asterisk to fix inline emphasis warning * add PULL_REQUEST_TEMPLATE.md * add __init__.py and import imagenet_example * fix duplicate label * add noindex option to fix duplicate object warnings * remove unexpected indent * refer explicit LightningModule * fix minor bug * refer EarlyStopping explicitly * restore exclude patterns * change the way how to refer class * remove unused import * update badges & drop Travis/Appveyor (#826) * drop Travis * drop Appveyor * update badges * fix missing PyPI images & CI badges (#853) * docs - anchor links (#848) * docs - add links * add desc. * add Greeting action (#843) * add Greeting action * Update greetings.yml Co-authored-by: William Falcon <waf2107@columbia.edu> * add pep8speaks (#842) * advanced profiler describe + cleaned up tests (#837) * add py36 compatibility * add test case to capture previous bug * clean up tests * clean up tests * Update lightning_module_template.py * Update lightning.py * respond lint issues * break long line * break more lines * checkout conflicting files from master * shorten url * checkout from upstream/master * remove trailing whitespaces * remove unused import LightningModule * fix sphinx bot warnings * Apply suggestions from code review just to trigger CI * Update .github/workflows/greetings.yml Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu> Co-authored-by: Jeremy Jordan <13970565+jeremyjordan@users.noreply.github.com>
2020-02-27 21:07:51 +00:00
class LightningTemplateModel(LightningModule):
2019-06-27 15:04:02 +00:00
"""
Sample model to show how to define a template.
Example:
>>> # define simple Net for MNIST dataset
>>> params = dict(
... drop_prob=0.2,
... batch_size=2,
... in_features=28 * 28,
... learning_rate=0.001 * 8,
... optimizer_name='adam',
... data_root='./datasets',
... out_features=10,
... hidden_dim=1000,
... )
>>> from argparse import Namespace
>>> hparams = Namespace(**params)
>>> model = LightningTemplateModel(hparams)
2019-06-27 15:04:02 +00:00
"""
def __init__(self, hparams):
"""
Pass in hyperparameters as a `argparse.Namespace` or a `dict` to the model.
2019-06-27 15:04:02 +00:00
"""
# init superclass
super().__init__()
2019-07-25 16:09:09 +00:00
self.hparams = hparams
2019-08-06 10:08:31 +00:00
self.c_d1 = nn.Linear(in_features=self.hparams.in_features,
out_features=self.hparams.hidden_dim)
2019-06-27 15:04:02 +00:00
self.c_d1_bn = nn.BatchNorm1d(self.hparams.hidden_dim)
self.c_d1_drop = nn.Dropout(self.hparams.drop_prob)
2019-08-06 10:08:31 +00:00
self.c_d2 = nn.Linear(in_features=self.hparams.hidden_dim,
out_features=self.hparams.out_features)
2019-06-27 15:04:02 +00:00
def forward(self, x):
"""
No special modification required for Lightning, define it as you normally would
in the `nn.Module` in vanilla PyTorch.
2019-06-27 15:04:02 +00:00
"""
x = self.c_d1(x.view(x.size(0), -1))
2019-06-27 15:04:02 +00:00
x = torch.tanh(x)
x = self.c_d1_bn(x)
x = self.c_d1_drop(x)
x = self.c_d2(x)
return x
2019-06-27 15:04:02 +00:00
def training_step(self, batch, batch_idx):
2019-06-27 15:04:02 +00:00
"""
Lightning calls this inside the training loop with the data from the training dataloader
passed in as `batch`.
2019-06-27 15:04:02 +00:00
"""
# forward pass
x, y = batch
y_hat = self(x)
loss = F.cross_entropy(y_hat, y)
tensorboard_logs = {'train_loss': loss}
return {'loss': loss, 'log': tensorboard_logs}
2019-06-27 15:04:02 +00:00
def validation_step(self, batch, batch_idx):
2019-06-27 15:04:02 +00:00
"""
Lightning calls this inside the validation loop with the data from the validation dataloader
passed in as `batch`.
2019-06-27 15:04:02 +00:00
"""
x, y = batch
y_hat = self(x)
val_loss = F.cross_entropy(y_hat, y)
2019-06-27 15:04:02 +00:00
labels_hat = torch.argmax(y_hat, dim=1)
n_correct_pred = torch.sum(y == labels_hat).item()
return {'val_loss': val_loss, "n_correct_pred": n_correct_pred, "n_pred": len(x)}
2019-07-18 16:11:59 +00:00
def test_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
test_loss = F.cross_entropy(y_hat, y)
labels_hat = torch.argmax(y_hat, dim=1)
n_correct_pred = torch.sum(y == labels_hat).item()
return {'test_loss': test_loss, "n_correct_pred": n_correct_pred, "n_pred": len(x)}
2019-06-27 15:04:02 +00:00
def validation_epoch_end(self, outputs):
2019-06-27 15:04:02 +00:00
"""
Called at the end of validation to aggregate outputs.
:param outputs: list of individual outputs of each validation step.
2019-06-27 15:04:02 +00:00
"""
avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
val_acc = sum([x['n_correct_pred'] for x in outputs]) / sum(x['n_pred'] for x in outputs)
tensorboard_logs = {'val_loss': avg_loss, 'val_acc': val_acc}
return {'val_loss': avg_loss, 'log': tensorboard_logs}
def test_epoch_end(self, outputs):
avg_loss = torch.stack([x['test_loss'] for x in outputs]).mean()
test_acc = sum([x['n_correct_pred'] for x in outputs]) / sum(x['n_pred'] for x in outputs)
tensorboard_logs = {'test_loss': avg_loss, 'test_acc': test_acc}
return {'test_loss': avg_loss, 'log': tensorboard_logs}
2019-06-27 15:04:02 +00:00
# ---------------------
# TRAINING SETUP
# ---------------------
def configure_optimizers(self):
"""
Return whatever optimizers and learning rate schedulers you want here.
At least one optimizer is required.
2019-06-27 15:04:02 +00:00
"""
2019-06-28 17:53:00 +00:00
optimizer = optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
2019-07-24 05:12:45 +00:00
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10)
return [optimizer], [scheduler]
2019-06-27 15:04:02 +00:00
Clean up dataloader logic (#926) * added get dataloaders directly using a getter * deleted decorator * added prepare_data hook * refactored dataloader init * refactored dataloader init * added dataloader reset flag and main loop * added dataloader reset flag and main loop * added dataloader reset flag and main loop * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixes #909 * fixes #909 * bug fix * Fixes #902
2020-02-25 03:23:25 +00:00
def prepare_data(self):
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (1.0,))])
self.mnist_train = MNIST(self.hparams.data_root, train=True, download=True, transform=transform)
self.mnist_test = MNIST(self.hparams.data_root, train=False, download=True, transform=transform)
Clean up dataloader logic (#926) * added get dataloaders directly using a getter * deleted decorator * added prepare_data hook * refactored dataloader init * refactored dataloader init * added dataloader reset flag and main loop * added dataloader reset flag and main loop * added dataloader reset flag and main loop * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixes #909 * fixes #909 * bug fix * Fixes #902
2020-02-25 03:23:25 +00:00
def train_dataloader(self):
log.info('Training data loader called.')
return DataLoader(self.mnist_train, batch_size=self.hparams.batch_size, num_workers=4)
2019-06-27 15:04:02 +00:00
def val_dataloader(self):
log.info('Validation data loader called.')
return DataLoader(self.mnist_test, batch_size=self.hparams.batch_size, num_workers=4)
2019-06-27 15:04:02 +00:00
def test_dataloader(self):
log.info('Test data loader called.')
return DataLoader(self.mnist_test, batch_size=self.hparams.batch_size, num_workers=4)
2019-06-27 15:04:02 +00:00
@staticmethod
def add_model_specific_args(parent_parser, root_dir): # pragma: no-cover
2019-06-27 15:04:02 +00:00
"""
Parameters you define here will be available to your model through `self.hparams`.
2019-06-27 15:04:02 +00:00
"""
parser = ArgumentParser(parents=[parent_parser])
2019-06-27 15:04:02 +00:00
# param overwrites
# parser.set_defaults(gradient_clip_val=5.0)
2019-06-27 15:04:02 +00:00
# network params
2019-08-05 21:57:39 +00:00
parser.add_argument('--in_features', default=28 * 28, type=int)
2019-07-08 14:57:34 +00:00
parser.add_argument('--out_features', default=10, type=int)
2019-08-05 21:57:39 +00:00
# use 500 for CPU, 50000 for GPU to see speed difference
parser.add_argument('--hidden_dim', default=50000, type=int)
parser.add_argument('--drop_prob', default=0.2, type=float)
parser.add_argument('--learning_rate', default=0.001, type=float)
2019-06-27 15:04:02 +00:00
# data
parser.add_argument('--data_root', default=os.path.join(root_dir, 'mnist'), type=str)
# training params (opt)
2020-02-25 14:46:01 +00:00
parser.add_argument('--epochs', default=20, type=int)
parser.add_argument('--optimizer_name', default='adam', type=str)
parser.add_argument('--batch_size', default=64, type=int)
2019-06-27 15:04:02 +00:00
return parser