2019-08-06 20:37:58 +00:00
< div align = "center" >
2020-03-24 18:50:35 +00:00
![Logo ](docs/source/_images/logos/lightning_logo.svg )
2019-03-31 19:32:35 +00:00
2019-08-05 20:02:48 +00:00
# PyTorch Lightning
2020-08-20 15:45:28 +00:00
**The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.**
2019-08-05 20:02:48 +00:00
2020-08-20 16:45:40 +00:00
< p align = "center" >
< a href = "#pytorch-lightning-masterclass" > Masterclass< / a > •
< a href = "#key-features" > Key Features< / a > •
< a href = "#how-to-use" > How To Use< / a > •
< a href = "#docs" > Docs< / a > •
< a href = "#resources" > Resources< / a > •
< a href = "#community" > Community< / a > •
< a href = "#faq" > FAQ< / a > •
< a href = "#licence" > Licence< / a >
< / p >
2019-08-05 20:02:48 +00:00
[![PyPI Status ](https://badge.fury.io/py/pytorch-lightning.svg )](https://badge.fury.io/py/pytorch-lightning)
2019-08-18 23:17:25 +00:00
[![PyPI Status ](https://pepy.tech/badge/pytorch-lightning )](https://pepy.tech/project/pytorch-lightning)
2020-09-02 15:50:02 +00:00
[![Conda ](https://img.shields.io/conda/v/conda-forge/pytorch-lightning?label=conda&color=success )](https://anaconda.org/conda-forge/pytorch-lightning)
2020-08-14 20:05:53 +00:00
[![DockerHub ](https://img.shields.io/docker/pulls/pytorchlightning/pytorch_lightning.svg )](https://hub.docker.com/r/pytorchlightning/pytorch_lightning)
2020-03-14 17:01:57 +00:00
[![codecov ](https://codecov.io/gh/PyTorchLightning/pytorch-lightning/branch/master/graph/badge.svg )](https://codecov.io/gh/PyTorchLightning/pytorch-lightning)
2020-04-27 21:41:46 +00:00
2020-05-15 12:36:40 +00:00
[![ReadTheDocs ](https://readthedocs.org/projects/pytorch-lightning/badge/?version=stable )](https://pytorch-lightning.readthedocs.io/en/stable/)
2020-06-17 19:56:19 +00:00
[![Slack ](https://img.shields.io/badge/slack-chat-green.svg?logo=slack )](https://join.slack.com/t/pytorch-lightning/shared_invite/zt-f6bl2l0l-JYMK3tbAgAmGRrlNr00f1A)
2020-09-02 15:50:02 +00:00
[![Discourse status ](https://img.shields.io/discourse/status?server=https%3A%2F%2Fforums.pytorchlightning.ai )](https://forums.pytorchlightning.ai/)
2020-01-14 12:05:26 +00:00
[![license ](https://img.shields.io/badge/License-Apache%202.0-blue.svg )](https://github.com/PytorchLightning/pytorch-lightning/blob/master/LICENSE)
2020-09-02 15:50:02 +00:00
[![Next Release ](https://img.shields.io/badge/Next%20Release-Sep%2014-<COLOR>.svg )](https://shields.io/)
2019-10-06 16:20:13 +00:00
2020-03-27 12:36:50 +00:00
<!--
2020-06-03 16:23:14 +00:00
[![CodeFactor ](https://www.codefactor.io/repository/github/pytorchlightning/pytorch-lightning/badge )](https://www.codefactor.io/repository/github/pytorchlightning/pytorch-lightning)
2019-08-15 13:54:29 +00:00
-->
2019-08-06 20:37:58 +00:00
< / div >
2019-08-05 20:02:48 +00:00
2020-08-20 15:45:28 +00:00
###### *Codecov is > 90%+ but build delays may show less
2020-08-20 16:45:40 +00:00
## PyTorch Lightning is just organized PyTorch
![PT to PL ](/docs/source/_images/general/pl_quick_start_full_compressed.gif )
Lightning disentangles PyTorch code to decouple the science from the engineering
by organizing it into 4 categories:
1. Research code (the LightningModule).
2. Engineering code (you delete, and is handled by the Trainer).
3. Non-essential research code (logging, etc... this goes in Callbacks).
4. Data (use PyTorch Dataloaders or organize them into a LightningDataModule).
Once you do this, you can train on multiple-GPUs, TPUs, CPUs and even in 16-bit precision without changing your code!
Get started with our [3 steps guide ](https://pytorch-lightning.readthedocs.io/en/stable/new-project.html )
2020-07-25 15:22:08 +00:00
---
2020-06-18 21:55:35 +00:00
## Trending contributors
2020-06-29 10:34:19 +00:00
[![ ](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/images/0 )](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/links/0)
[![ ](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/images/1 )](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/links/1)
[![ ](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/images/2 )](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/links/2)
[![ ](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/images/3 )](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/links/3)
[![ ](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/images/4 )](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/links/4)
[![ ](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/images/5 )](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/links/5)
[![ ](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/images/6 )](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/links/6)
[![ ](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/images/7 )](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/links/7)
2020-06-18 21:55:35 +00:00
2020-02-14 11:49:32 +00:00
---
2020-06-18 21:54:29 +00:00
2020-02-14 11:49:32 +00:00
## Continuous Integration
< center >
2020-08-02 10:34:36 +00:00
| System / PyTorch ver. | 1.3 (min. req.)* | 1.4 | 1.5 | 1.6 (latest) |
2020-07-31 09:18:32 +00:00
| :---: | :---: | :---: | :---: | :---: |
2020-08-14 20:34:47 +00:00
| Conda py3.7 [linux] | [![PyTorch & Conda ](https://github.com/PyTorchLightning/pytorch-lightning/workflows/PyTorch%20&%20Conda/badge.svg )](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22PyTorch+%26+Conda%22+branch%3Amaster) | [![PyTorch & Conda ](https://github.com/PyTorchLightning/pytorch-lightning/workflows/PyTorch%20&%20Conda/badge.svg )](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22PyTorch+%26+Conda%22+branch%3Amaster) | [![PyTorch & Conda ](https://github.com/PyTorchLightning/pytorch-lightning/workflows/PyTorch%20&%20Conda/badge.svg )](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22PyTorch+%26+Conda%22+branch%3Amaster) | [![PyTorch & Conda ](https://github.com/PyTorchLightning/pytorch-lightning/workflows/PyTorch%20&%20Conda/badge.svg )](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22PyTorch+%26+Conda%22+branch%3Amaster) |
2020-08-02 10:34:36 +00:00
| Linux py3.7 [GPUs**] | - | - | - | [![Build Status ](http://35.192.60.23/api/badges/PyTorchLightning/pytorch-lightning/status.svg )](http://35.192.60.23/PyTorchLightning/pytorch-lightning) |
2020-08-14 20:34:47 +00:00
| Linux py3.7 [TPUs***] | - | - | - | [![TPU tests ](https://github.com/PyTorchLightning/pytorch-lightning/workflows/TPU%20tests/badge.svg )](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22TPU+tests%22+branch%3Amaster) |
2020-09-10 22:38:29 +00:00
| Linux py3.6 / py3.7 / py3.8 | [![CI complete testing ](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20complete%20testing/badge.svg )](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22CI+testing%22) | - | - | [![CI complete testing ](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20complete%20testing/badge.svg )](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22CI+testing%22) |
| OSX py3.6 / py3.7 | - | [![CI complete testing ](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20complete%20testing/badge.svg )](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22CI+testing%22) | - | [![CI complete testing ](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20complete%20testing/badge.svg )](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22CI+testing%22) |
| Windows py3.6 / py3.7 / py3.8 | [![CI complete testing ](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20complete%20testing/badge.svg )](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22CI+testing%22) | - | - | [![CI complete testing ](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20complete%20testing/badge.svg )](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22CI+testing%22)
2020-02-14 11:49:32 +00:00
2020-08-02 10:34:36 +00:00
- _\* `torch>=1.4` is the minimal pytorch version for Python 3.8_
- _\** tests run on two NVIDIA K80_
- _\*** tests run on Google GKE TPUv2/3_
2020-02-14 11:49:32 +00:00
< / center >
2020-08-08 00:21:51 +00:00
---
2020-08-20 15:45:28 +00:00
2020-08-20 16:45:40 +00:00
## [PyTorch Lightning Masterclass](https://www.youtube.com/watch?v=DbESHcCoWbM&list=PLaMu-SDt_RB5NUm67hU2pdE75j6KaIOv2)
### [New lessons weekly!](https://www.youtube.com/watch?v=DbESHcCoWbM&list=PLaMu-SDt_RB5NUm67hU2pdE75j6KaIOv2)
2020-08-20 15:45:28 +00:00
< div style = "display: flex" >
< div >
< p > From PyTorch to PyTorch Lightning< / p >
< a href = "https://www.youtube.com/watch?v=DbESHcCoWbM&list=PLaMu-SDt_RB5NUm67hU2pdE75j6KaIOv2" >
< img alt = "From PyTorch to PyTorch Lightning" src = "https://github.com/PyTorchLightning/pytorch-lightning/blob/master/docs/source/_images/general/PTL101_youtube_thumbnail.jpg" width = 250" >
< / a >
< / div >
< div style = "margin-top: 5px" >
< p > Converting a VAE to PyTorch Lightning< / p >
< a href = "https://www.youtube.com/watch?v=QHww1JH7IDU" >
< img alt = "From PyTorch to PyTorch Lightning" src = "https://github.com/PyTorchLightning/pytorch-lightning/blob/master/docs/source/_images/general/tutorial_cover.jpg" width = 250" >
< / a >
< / div >
< / div >
2020-08-08 00:21:51 +00:00
2020-08-20 16:45:40 +00:00
---
## Key Features
* Scale your models to run on any hardware (CPU, GPUs, TPUs) without changing your model
* Making code more readable by decoupling the research code from the engineering
* Easier to reproduce
2020-08-24 09:02:18 +00:00
* Less error prone by automating most of the training loop and tricky engineering
2020-08-20 16:45:40 +00:00
* Keeps all the flexibility (LightningModules are still PyTorch modules), but removes a ton of boilerplate
* Lightning has out-of-the-box integration with the popular logging/visualizing frameworks ([Tensorboard](https://pytorch.org/docs/stable/tensorboard.html), [MLFlow ](https://mlflow.org/ ), [Neptune.ai ](https://neptune.ai/ ), [Comet.ml ](https://www.comet.ml/site/ ), [Wandb ](https://www.wandb.com/ )).
2020-08-25 09:22:58 +00:00
* [Tested rigorously with every new PR ](https://github.com/PyTorchLightning/pytorch-lightning/tree/master/tests ). We test every combination of PyTorch and Python supported versions, every OS, multi GPUs and even TPUs.
2020-08-20 16:45:40 +00:00
* Minimal running speed overhead (about 300 ms per epoch compared with pure PyTorch).
### Lightning automates 40+ parts of DL/ML research
- GPU training
- Distributed GPU (cluster) training
- TPU training
- EarlyStopping
- Logging/Visualizing
- Checkpointing
- Experiment management
- [Full list here ](https://pytorch-lightning.readthedocs.io/en/latest/#common-use-cases )
2020-08-20 15:45:28 +00:00
---
2020-05-12 11:47:57 +00:00
2020-08-20 16:45:40 +00:00
## How To Use
##### Install
Simple installation from PyPI
```bash
pip install pytorch-lightning
```
From Conda
```bash
conda install pytorch-lightning -c conda-forge
```
2020-08-22 13:02:27 +00:00
Install bleeding-edge (no guarantees)
```bash
pip install git+https://github.com/PytorchLightning/pytorch-lightning.git@master --upgrade
```
2020-08-20 16:45:40 +00:00
##### Here's a minimal example without a test loop.
2020-05-12 12:46:22 +00:00
```python
2020-08-20 15:45:28 +00:00
import os
import torch
import torch.nn.functional as F
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader, random_split
from torchvision import transforms
import pytorch_lightning as pl
2020-09-10 09:14:49 +00:00
from pytorch_lightning import Trainer
2020-08-20 15:45:28 +00:00
```
2020-05-12 12:46:22 +00:00
2020-08-20 15:45:28 +00:00
```python
# this is just a plain nn.Module with some structure
2020-05-12 12:46:55 +00:00
class LitClassifier(pl.LightningModule):
2020-05-12 12:46:22 +00:00
def __init__ (self):
2020-05-12 12:59:23 +00:00
super().__init__()
2020-05-12 12:46:22 +00:00
self.l1 = torch.nn.Linear(28 * 28, 10)
def forward(self, x):
return torch.relu(self.l1(x.view(x.size(0), -1)))
2020-08-20 15:45:28 +00:00
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = F.cross_entropy(y_hat, y)
result = pl.TrainResult(loss)
result.log('train_loss', loss, on_epoch=True)
return result
def validation_step(self, batch, batch_idx):
2020-05-12 12:46:22 +00:00
x, y = batch
2020-08-20 15:45:28 +00:00
y_hat = self(x)
loss = F.cross_entropy(y_hat, y)
result = pl.EvalResult(checkpoint_on=loss)
result.log('val_loss', loss)
return result
2020-05-12 12:46:22 +00:00
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=0.02)
# train!
2020-08-20 15:45:28 +00:00
dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
train, val = random_split(dataset, [55000, 5000])
2020-05-12 12:46:22 +00:00
2020-05-12 12:56:32 +00:00
model = LitClassifier()
2020-09-10 09:14:49 +00:00
trainer = Trainer()
2020-08-20 15:45:28 +00:00
trainer.fit(model, DataLoader(train), DataLoader(val))
2020-05-12 12:46:22 +00:00
```
2020-08-20 16:45:40 +00:00
#### And without changing a single line of code, you could run on GPUs
```python
# 8 GPUs
2020-09-10 09:14:49 +00:00
2020-08-20 16:45:40 +00:00
trainer = Trainer(max_epochs=1, gpus=8)
# 256 GPUs
trainer = Trainer(max_epochs=1, gpus=8, num_nodes=32)
```
Or TPUs
```python
# Distributes TPU core training
trainer = Trainer(tpu_cores=8)
# Single TPU core training
trainer = Trainer(tpu_cores=[1])
```
2020-08-20 15:45:28 +00:00
---
2020-08-20 16:45:40 +00:00
### Docs
- [master ](https://pytorch-lightning.readthedocs.io/en/latest )
- [stable ](https://pytorch-lightning.readthedocs.io/en/stable )
- [0.9.0 ](https://pytorch-lightning.readthedocs.io/en/0.9.0/ )
- [0.8.5 ](https://pytorch-lightning.readthedocs.io/en/0.8.5/ )
- [0.8.4 ](https://pytorch-lightning.readthedocs.io/en/0.8.4/ )
- [0.8.3 ](https://pytorch-lightning.readthedocs.io/en/0.8.3/ )
- [0.8.1 ](https://pytorch-lightning.readthedocs.io/en/0.8.1/ )
2020-08-20 15:45:28 +00:00
2020-08-20 16:45:40 +00:00
---
## Resources
### Examples
2020-08-20 15:45:28 +00:00
###### Hello world
2020-08-20 16:45:40 +00:00
[MNIST hello world ](https://colab.research.google.com/drive/1F_RNcHzTfFuQf-LeKvSlud6x7jXYkG31#scrollTo=gEulmrbxwaYL )
[MNIST on TPUs ](https://colab.research.google.com/drive/1-_LKx4HwAxl5M6xPJmqAAu444LTDQoa3 )
2020-08-20 15:45:28 +00:00
###### Contrastive Learning
[BYOL ](https://pytorch-lightning-bolts.readthedocs.io/en/latest/self_supervised_models.html#byol )
[CPC v2 ](https://pytorch-lightning-bolts.readthedocs.io/en/latest/self_supervised_models.html#cpc-v2 )
[Moco v2 ](https://pytorch-lightning-bolts.readthedocs.io/en/latest/self_supervised_models.html#moco-v2 )
2020-08-20 16:45:40 +00:00
[SIMCLR ](https://pytorch-lightning-bolts.readthedocs.io/en/latest/self_supervised_models.html#simclr )
2020-08-20 15:45:28 +00:00
###### NLP
2020-07-28 15:43:47 +00:00
[BERT ](https://colab.research.google.com/drive/1F_RNcHzTfFuQf-LeKvSlud6x7jXYkG31#scrollTo=7uQVI-xv9Ddj )
2020-08-20 16:45:40 +00:00
[GPT-2 ](https://pytorch-lightning-bolts.readthedocs.io/en/latest/convolutional.html#gpt-2 )
2020-08-20 15:45:28 +00:00
###### Reinforcement Learning
2020-07-28 15:43:47 +00:00
[DQN ](https://colab.research.google.com/drive/1F_RNcHzTfFuQf-LeKvSlud6x7jXYkG31#scrollTo=NWvMLBDySQI5 )
2020-08-20 15:45:28 +00:00
[Dueling-DQN ](https://pytorch-lightning-bolts.readthedocs.io/en/latest/reinforce_learn.html#dueling-dqn )
[Reinforce ](https://pytorch-lightning-bolts.readthedocs.io/en/latest/reinforce_learn.html#reinforce )
###### Vision
[GAN ](https://colab.research.google.com/drive/1F_RNcHzTfFuQf-LeKvSlud6x7jXYkG31#scrollTo=P0bSmCw57aV5 )
###### Classic ML
[Logistic Regression ](https://pytorch-lightning-bolts.readthedocs.io/en/latest/classic_ml.html#logistic-regression )
2020-08-20 16:45:40 +00:00
[Linear Regression ](https://pytorch-lightning-bolts.readthedocs.io/en/latest/classic_ml.html#linear-regression )
### Tutorials
Check out our [introduction guide ](https://pytorch-lightning.readthedocs.io/en/latest/introduction_guide.html ) to get started.
Or jump straight into [our tutorials ](https://pytorch-lightning.readthedocs.io/en/latest/#tutorials ).
2020-08-20 15:45:28 +00:00
---
2019-12-12 19:06:20 +00:00
2020-08-20 16:45:40 +00:00
## Community
2020-04-03 14:04:54 +00:00
2020-08-20 16:45:40 +00:00
The lightning cimmunity is maintained by
2020-08-27 15:27:54 +00:00
- [16 core contributors ](https://pytorch-lightning.readthedocs.io/en/latest/governance.html ) who are all a mix of professional engineers, Research Scientists, Ph.D. students from top AI labs.
2020-08-20 16:45:40 +00:00
- 200+ community contributors.
Lightning is also part of the [PyTorch ecosystem ](https://pytorch.org/ecosystem/ ) which requires projects to have solid testing, documentation and support.
### Asking for help
If you have any questions please:
2020-08-31 14:52:45 +00:00
1. [Read the docs ](https://pytorch-lightning.rtfd.io/en/latest/ ).
2. [Look it up in our forum (or add a new question) ](https://forums.pytorchlightning.ai/ )
2020-08-20 16:45:40 +00:00
2. [Search through the issues ](https://github.com/PytorchLightning/pytorch-lightning/issues?utf8=%E2%9C%93&q=my++question ).
3. [Join our slack ](https://join.slack.com/t/pytorch-lightning/shared_invite/zt-f6bl2l0l-JYMK3tbAgAmGRrlNr00f1A ).
4. [Ask on stackoverflow ](https://stackoverflow.com/questions/ask?guided=false ) with the tag pytorch-lightning.
### Funding
Building open-source software with only a few part-time people is hard! We've secured funding to make sure we can
hire a full-time staff, attend conferences, and move faster through implementing features you request.
Our goal is to build an incredible research platform and a big supportive community. Many open-source projects
have gone on to fund operations through things like support and special help for big corporations!
If you are one of these corporations, please feel free to reach out to will@pytorchlightning.ai!
2020-06-09 11:43:33 +00:00
2020-08-20 15:45:28 +00:00
---
2020-08-20 16:45:40 +00:00
## FAQ
2020-08-20 15:45:28 +00:00
2020-08-20 16:45:40 +00:00
**Starting a new project?**
2020-04-03 14:04:54 +00:00
2020-08-20 16:45:40 +00:00
[Use our seed-project aimed at reproducibility! ](https://github.com/PytorchLightning/pytorch-lightning-conference-seed )
2020-03-06 16:35:15 +00:00
2020-08-20 16:45:40 +00:00
**Why lightning?**
2020-03-06 16:35:15 +00:00
2020-08-20 16:45:40 +00:00
Although your research/production project might start simple, once you add things like GPU AND TPU training, 16-bit precision, etc, you end up spending more time engineering than researching. Lightning automates AND rigorously tests those parts for you.
2020-03-06 16:35:15 +00:00
2020-08-20 16:45:40 +00:00
Lightning has 3 goals in mind:
2020-04-03 14:04:54 +00:00
2020-08-20 16:45:40 +00:00
1. Maximal flexibility while abstracting out the common boilerplate across research projects.
2. Reproducibility. If all projects use the LightningModule template, it will be much much easier to understand what's going on and where to look! It will also mean every implementation follows a standard format.
3. Democratizing PyTorch power-user features. Distributed training? 16-bit? know you need them but don't want to take the time to implement? All good... these come built into Lightning.
2020-04-03 14:04:54 +00:00
2020-03-06 16:35:15 +00:00
2020-08-20 16:45:40 +00:00
**Who is Lightning for?**
2020-03-06 16:35:15 +00:00
- Professional researchers
2020-05-13 16:22:12 +00:00
- Ph.D. students
2020-03-06 16:35:15 +00:00
- Corporate production teams
If you're just getting into deep learning, we recommend you learn PyTorch first! Once you've implemented a few models, come back and use all the advanced features of Lightning :)
2019-12-12 18:35:41 +00:00
2020-08-20 16:45:40 +00:00
**What does lightning control for me?**
2019-12-12 18:35:41 +00:00
2020-03-27 12:36:50 +00:00
Everything in Blue!
2020-05-13 16:22:12 +00:00
This is how lightning separates the science (red) from engineering (blue).
2019-12-12 18:35:41 +00:00
2020-03-24 18:50:35 +00:00
![Overview ](docs/source/_images/general/pl_overview.gif )
2019-03-31 20:50:32 +00:00
2020-08-20 16:45:40 +00:00
**How much effort is it to convert?**
2020-03-06 16:35:15 +00:00
If your code is not a huge mess you should be able to organize it into a LightningModule in less than 1 hour.
If your code IS a mess, then you needed to clean up anyhow ;)
2020-07-25 15:22:08 +00:00
[Check out this step-by-step guide ](https://towardsdatascience.com/from-pytorch-to-pytorch-lightning-a-gentle-introduction-b371b7caaf09 ).
2020-05-12 11:49:17 +00:00
[Or watch this video ](https://www.youtube.com/watch?v=QHww1JH7IDU ).
2020-02-28 03:38:08 +00:00
2020-08-20 16:45:40 +00:00
**How flexible is it?**
2019-11-16 16:22:51 +00:00
2020-08-20 16:45:40 +00:00
As you see, you're just organizing your PyTorch code - there's no abstraction.
2019-06-26 23:47:31 +00:00
2020-08-20 16:45:40 +00:00
And for the stuff that the Trainer abstracts out, you can [override any part ](https://pytorch-lightning.readthedocs.io/en/latest/introduction_guide.html#extensibility ) you want to do things like implement your own distributed training, 16-bit precision, or even a custom backward pass.
2020-03-06 16:35:15 +00:00
2020-08-20 16:45:40 +00:00
For example, here you could do your own backward pass without worrying about GPUs, TPUs or 16-bit since we already handle it.
2019-07-25 14:23:51 +00:00
2020-08-20 16:45:40 +00:00
```python
class LitModel(LightningModule):
def optimizer_zero_grad(self, current_epoch, batch_idx, optimizer, opt_idx):
optimizer.zero_grad()
```
For anything else you might need, we have an extensive [callback system ](https://pytorch-lightning.readthedocs.io/en/latest/introduction_guide.html#callbacks ) you can use to add arbitrary functionality not implemented by our team in the Trainer.
**What types of research works?**
2020-03-27 12:36:50 +00:00
2020-03-06 16:35:15 +00:00
Anything! Remember, that this is just organized PyTorch code.
The Training step defines the core complexity found in the training loop.
2019-08-31 07:08:18 +00:00
2020-08-20 16:45:40 +00:00
##### Could be as complex as a seq2seq
2019-06-27 18:44:51 +00:00
2019-06-26 23:44:41 +00:00
```python
# define what happens for training here
2019-12-04 11:57:10 +00:00
def training_step(self, batch, batch_idx):
2019-09-25 23:05:06 +00:00
x, y = batch
2020-03-27 12:36:50 +00:00
2019-06-27 18:43:10 +00:00
# define your own forward and loss calculation
2019-06-29 22:05:17 +00:00
hidden_states = self.encoder(x)
2020-03-27 12:36:50 +00:00
2019-08-07 15:16:02 +00:00
# even as complex as a seq-2-seq + attn model
2019-06-29 22:05:17 +00:00
# (this is just a toy, non-working example to illustrate)
start_token = '< SOS > '
last_hidden = torch.zeros(...)
loss = 0
for step in range(max_seq_len):
attn_context = self.attention_nn(hidden_states, start_token)
2020-03-27 12:36:50 +00:00
pred = self.decoder(start_token, attn_context, last_hidden)
2019-06-29 22:05:17 +00:00
last_hidden = pred
pred = self.predict_nn(pred)
loss += self.loss(last_hidden, y[step])
2020-03-27 12:36:50 +00:00
2019-06-29 22:05:17 +00:00
#toy example as well
loss = loss / max_seq_len
2020-03-27 12:36:50 +00:00
return {'loss': loss}
2019-06-26 23:44:41 +00:00
```
2019-06-27 18:44:51 +00:00
2020-08-20 16:45:40 +00:00
##### Or as basic as CNN image classification
2019-06-26 23:44:41 +00:00
```python
# define what happens for validation here
2020-03-27 12:36:50 +00:00
def validation_step(self, batch, batch_idx):
2019-09-25 23:05:06 +00:00
x, y = batch
2020-03-27 12:36:50 +00:00
2019-06-29 22:05:17 +00:00
# or as basic as a CNN classification
2020-03-27 07:17:56 +00:00
out = self(x)
2019-06-27 00:00:53 +00:00
loss = my_loss(out, y)
2020-03-27 12:36:50 +00:00
return {'loss': loss}
2019-06-26 23:44:41 +00:00
```
2020-08-20 16:45:40 +00:00
**Does Lightning Slow my PyTorch?**
2020-03-06 16:35:15 +00:00
2020-08-20 16:45:40 +00:00
No! Lightning is meant for research/production cases that require high-performance.
2020-08-20 15:45:28 +00:00
2020-08-20 16:45:40 +00:00
We have tests to ensure we get the EXACT same results in under 600 ms difference per epoch. In reality, lightning adds about a 300 ms overhead per epoch.
[Check out the parity tests here ](https://github.com/PyTorchLightning/pytorch-lightning/tree/master/benchmarks ).
2020-03-06 16:35:15 +00:00
2020-08-20 16:45:40 +00:00
Overall, Lightning guarantees rigorously tested, correct, modern best practices for the automated parts.
2019-08-05 23:34:34 +00:00
2020-07-25 15:22:08 +00:00
**How does Lightning compare with Ignite and fast.ai?**
2020-08-20 16:45:40 +00:00
2020-03-27 12:36:50 +00:00
[Here's a thorough comparison ](https://medium.com/@_willfalcon/pytorch-lightning-vs-pytorch-ignite-vs-fast-ai-61dc7480ad8a ).
2019-08-05 23:34:34 +00:00
2020-07-25 15:22:08 +00:00
**Is this another library I have to learn?**
2020-08-20 16:45:40 +00:00
2020-03-30 14:12:48 +00:00
Nope! We use pure Pytorch everywhere and don't add unnecessary abstractions!
2019-08-05 23:34:34 +00:00
2020-07-25 15:22:08 +00:00
**Are there plans to support Python 2?**
2020-08-20 16:45:40 +00:00
2020-03-27 12:36:50 +00:00
Nope.
2019-08-03 12:21:25 +00:00
2020-07-25 15:22:08 +00:00
**Are there plans to support virtualenv?**
2020-08-20 16:45:40 +00:00
2020-07-25 15:22:08 +00:00
Nope. Please use anaconda or miniconda.
2020-05-12 12:52:11 +00:00
```bash
conda activate my_env
pip install pytorch-lightning
```
2019-08-08 16:43:14 +00:00
2020-07-31 18:50:06 +00:00
---
2020-08-20 02:03:22 +00:00
## Licence
2020-08-20 16:45:40 +00:00
2020-08-20 02:03:22 +00:00
Please observe the Apache 2.0 license that is listed in this repository. In addition
the Lightning framework is Patent Pending.
2020-06-08 11:22:54 +00:00
## BibTeX
2019-11-05 16:52:50 +00:00
If you want to cite the framework feel free to use this (but only if you loved it 😊):
2020-04-28 03:54:20 +00:00
2020-04-03 13:52:41 +00:00
```bibtex
2020-04-28 03:54:20 +00:00
@article {falcon2019pytorch,
title={PyTorch Lightning},
author={Falcon, WA},
2020-06-18 21:54:29 +00:00
journal={GitHub. Note: https://github.com/PyTorchLightning/pytorch-lightning Cited by},
2020-04-28 03:54:20 +00:00
volume={3},
year={2019}
2019-11-05 16:53:12 +00:00
}
```