87 lines
2.6 KiB
Python
87 lines
2.6 KiB
Python
|
# Copyright The PyTorch Lightning team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import os
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pytorch_lightning import Trainer
|
||
|
from pytorch_lightning.callbacks import XLAStatsMonitor
|
||
|
from pytorch_lightning.loggers import CSVLogger
|
||
|
from pytorch_lightning.loggers.csv_logs import ExperimentWriter
|
||
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
||
|
from tests.helpers import BoringModel
|
||
|
from tests.helpers.runif import RunIf
|
||
|
|
||
|
|
||
|
@RunIf(tpu=True)
|
||
|
def test_xla_stats_monitor(tmpdir):
|
||
|
"""Test XLA stats are logged using a logger."""
|
||
|
|
||
|
model = BoringModel()
|
||
|
xla_stats = XLAStatsMonitor()
|
||
|
logger = CSVLogger(tmpdir)
|
||
|
|
||
|
trainer = Trainer(
|
||
|
default_root_dir=tmpdir, max_epochs=2, limit_train_batches=5, tpu_cores=8, callbacks=[xla_stats], logger=logger
|
||
|
)
|
||
|
|
||
|
trainer.fit(model)
|
||
|
assert trainer.state.finished, f"Training failed with {trainer.state}"
|
||
|
|
||
|
path_csv = os.path.join(logger.log_dir, ExperimentWriter.NAME_METRICS_FILE)
|
||
|
met_data = np.genfromtxt(path_csv, delimiter=',', names=True, deletechars='', replace_space=' ')
|
||
|
|
||
|
fields = ['avg. free memory (MB)', 'avg. peak memory (MB)']
|
||
|
|
||
|
for f in fields:
|
||
|
assert any([f in h for h in met_data.dtype.names])
|
||
|
|
||
|
|
||
|
@RunIf(tpu=True)
|
||
|
def test_xla_stats_monitor_no_logger(tmpdir):
|
||
|
"""Test XLAStatsMonitor with no logger in Trainer."""
|
||
|
|
||
|
model = BoringModel()
|
||
|
xla_stats = XLAStatsMonitor()
|
||
|
|
||
|
trainer = Trainer(
|
||
|
default_root_dir=tmpdir,
|
||
|
callbacks=[xla_stats],
|
||
|
max_epochs=1,
|
||
|
tpu_cores=[1],
|
||
|
logger=False,
|
||
|
)
|
||
|
|
||
|
with pytest.raises(MisconfigurationException, match='Trainer that has no logger.'):
|
||
|
trainer.fit(model)
|
||
|
|
||
|
|
||
|
@RunIf(tpu=True)
|
||
|
def test_xla_stats_monitor_no_tpu_warning(tmpdir):
|
||
|
"""Test XLAStatsMonitor raises a warning when not training on TPUs."""
|
||
|
|
||
|
model = BoringModel()
|
||
|
xla_stats = XLAStatsMonitor()
|
||
|
|
||
|
trainer = Trainer(
|
||
|
default_root_dir=tmpdir,
|
||
|
callbacks=[xla_stats],
|
||
|
max_steps=1,
|
||
|
tpu_cores=None,
|
||
|
)
|
||
|
|
||
|
with pytest.raises(MisconfigurationException, match='not running on TPU'):
|
||
|
trainer.fit(model)
|