114 lines
3.0 KiB
Python
114 lines
3.0 KiB
Python
|
"""
|
||
|
Lightning supports most popular logging frameworks (Tensorboard, comet, weights and biases, etc...).
|
||
|
To use a logger, simply pass it into the trainer.
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
from pytorch_lightning import loggers
|
||
|
|
||
|
# lightning uses tensorboard by default
|
||
|
tb_logger = loggers.TensorBoardLogger()
|
||
|
trainer = Trainer(logger=tb_logger)
|
||
|
|
||
|
# or choose from any of the others such as MLFlow, Comet, Neptune, Wandb
|
||
|
comet_logger = loggers.CometLogger()
|
||
|
trainer = Trainer(logger=comet_logger)
|
||
|
|
||
|
.. note:: All loggers log by default to `os.getcwd()`. To change the path without creating a logger set
|
||
|
Trainer(default_save_path='/your/path/to/save/checkpoints')
|
||
|
|
||
|
Custom logger
|
||
|
-------------
|
||
|
|
||
|
You can implement your own logger by writing a class that inherits from
|
||
|
`LightningLoggerBase`. Use the `rank_zero_only` decorator to make sure that
|
||
|
only the first process in DDP training logs data.
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
from pytorch_lightning.loggers import LightningLoggerBase, rank_zero_only
|
||
|
|
||
|
class MyLogger(LightningLoggerBase):
|
||
|
|
||
|
@rank_zero_only
|
||
|
def log_hyperparams(self, params):
|
||
|
# params is an argparse.Namespace
|
||
|
# your code to record hyperparameters goes here
|
||
|
pass
|
||
|
|
||
|
@rank_zero_only
|
||
|
def log_metrics(self, metrics, step):
|
||
|
# metrics is a dictionary of metric names and values
|
||
|
# your code to record metrics goes here
|
||
|
pass
|
||
|
|
||
|
def save(self):
|
||
|
# Optional. Any code necessary to save logger data goes here
|
||
|
pass
|
||
|
|
||
|
@rank_zero_only
|
||
|
def finalize(self, status):
|
||
|
# Optional. Any code that needs to be run after training
|
||
|
# finishes goes here
|
||
|
|
||
|
|
||
|
If you write a logger than may be useful to others, please send
|
||
|
a pull request to add it to Lighting!
|
||
|
|
||
|
Using loggers
|
||
|
-------------
|
||
|
|
||
|
Call the logger anywhere from your LightningModule by doing:
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
def train_step(...):
|
||
|
# example
|
||
|
self.logger.experiment.whatever_method_summary_writer_supports(...)
|
||
|
|
||
|
def any_lightning_module_function_or_hook(...):
|
||
|
self.logger.experiment.add_histogram(...)
|
||
|
|
||
|
Supported Loggers
|
||
|
-----------------
|
||
|
"""
|
||
|
from os import environ
|
||
|
|
||
|
from .base import LightningLoggerBase, rank_zero_only
|
||
|
from .tensorboard import TensorBoardLogger
|
||
|
|
||
|
__all__ = ['TensorBoardLogger']
|
||
|
|
||
|
try:
|
||
|
# needed to prevent ImportError and duplicated logs.
|
||
|
environ["COMET_DISABLE_AUTO_LOGGING"] = "1"
|
||
|
|
||
|
from .comet import CometLogger
|
||
|
__all__.append('CometLogger')
|
||
|
except ImportError:
|
||
|
del environ["COMET_DISABLE_AUTO_LOGGING"]
|
||
|
|
||
|
try:
|
||
|
from .mlflow import MLFlowLogger
|
||
|
__all__.append('MLFlowLogger')
|
||
|
except ImportError:
|
||
|
pass
|
||
|
|
||
|
try:
|
||
|
from .neptune import NeptuneLogger
|
||
|
__all__.append('NeptuneLogger')
|
||
|
except ImportError:
|
||
|
pass
|
||
|
|
||
|
try:
|
||
|
from .test_tube import TestTubeLogger
|
||
|
__all__.append('TestTubeLogger')
|
||
|
except ImportError:
|
||
|
pass
|
||
|
|
||
|
try:
|
||
|
from .wandb import WandbLogger
|
||
|
__all__.append('WandbLogger')
|
||
|
except ImportError:
|
||
|
pass
|