2020-10-13 11:18:07 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
2020-10-09 02:58:33 +00:00
|
|
|
import torch
|
2020-10-09 23:23:12 +00:00
|
|
|
from typing import Any, Optional
|
2020-10-09 02:58:33 +00:00
|
|
|
|
|
|
|
from pytorch_lightning.metrics.metric import Metric
|
2020-10-09 23:23:12 +00:00
|
|
|
from pytorch_lightning.utilities import rank_zero_warn
|
2020-10-21 22:05:59 +00:00
|
|
|
from pytorch_lightning.metrics.functional.explained_variance import (
|
|
|
|
_explained_variance_update,
|
|
|
|
_explained_variance_compute,
|
|
|
|
)
|
2020-10-09 02:58:33 +00:00
|
|
|
|
|
|
|
|
|
|
|
class ExplainedVariance(Metric):
|
|
|
|
"""
|
|
|
|
Computes explained variance.
|
|
|
|
|
2020-10-09 23:23:12 +00:00
|
|
|
Forward accepts
|
|
|
|
|
|
|
|
- ``preds`` (float tensor): ``(N,)`` or ``(N, ...)`` (multioutput)
|
|
|
|
- ``target`` (long tensor): ``(N,)`` or ``(N, ...)`` (multioutput)
|
|
|
|
|
|
|
|
In the case of multioutput, as default the variances will be uniformly
|
|
|
|
averaged over the additional dimensions. Please see argument `multioutput`
|
|
|
|
for changing this behavior.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
multioutput:
|
|
|
|
Defines aggregation in the case of multiple output scores. Can be one
|
|
|
|
of the following strings (default is `'uniform_average'`.):
|
|
|
|
|
|
|
|
* `'raw_values'` returns full set of scores
|
|
|
|
* `'uniform_average'` scores are uniformly averaged
|
|
|
|
* `'variance_weighted'` scores are weighted by their individual variances
|
|
|
|
|
|
|
|
compute_on_step:
|
|
|
|
Forward only calls ``update()`` and return None if this is set to False. default: True
|
2020-10-10 16:31:00 +00:00
|
|
|
dist_sync_on_step:
|
2020-10-09 23:23:12 +00:00
|
|
|
Synchronize metric state across processes at each ``forward()``
|
|
|
|
before returning the value at the step. default: False
|
|
|
|
process_group:
|
|
|
|
Specify the process group on which synchronization is called. default: None (which selects the entire world)
|
|
|
|
|
2020-10-09 02:58:33 +00:00
|
|
|
Example:
|
|
|
|
|
|
|
|
>>> from pytorch_lightning.metrics import ExplainedVariance
|
|
|
|
>>> target = torch.tensor([3, -0.5, 2, 7])
|
|
|
|
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
|
|
|
|
>>> explained_variance = ExplainedVariance()
|
|
|
|
>>> explained_variance(preds, target)
|
|
|
|
tensor(0.9572)
|
|
|
|
|
2020-10-09 23:23:12 +00:00
|
|
|
>>> target = torch.tensor([[0.5, 1], [-1, 1], [7, -6]])
|
|
|
|
>>> preds = torch.tensor([[0, 2], [-1, 2], [8, -5]])
|
|
|
|
>>> explained_variance = ExplainedVariance(multioutput='raw_values')
|
|
|
|
>>> explained_variance(preds, target)
|
|
|
|
tensor([0.9677, 1.0000])
|
2020-10-09 02:58:33 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
2020-10-09 23:23:12 +00:00
|
|
|
multioutput: str = 'uniform_average',
|
2020-10-09 02:58:33 +00:00
|
|
|
compute_on_step: bool = True,
|
2020-10-10 16:31:00 +00:00
|
|
|
dist_sync_on_step: bool = False,
|
2020-10-09 02:58:33 +00:00
|
|
|
process_group: Optional[Any] = None,
|
|
|
|
):
|
|
|
|
super().__init__(
|
|
|
|
compute_on_step=compute_on_step,
|
2020-10-10 16:31:00 +00:00
|
|
|
dist_sync_on_step=dist_sync_on_step,
|
2020-10-09 02:58:33 +00:00
|
|
|
process_group=process_group,
|
|
|
|
)
|
2020-10-09 23:23:12 +00:00
|
|
|
allowed_multioutput = ('raw_values', 'uniform_average', 'variance_weighted')
|
|
|
|
if multioutput not in allowed_multioutput:
|
|
|
|
raise ValueError(
|
|
|
|
f'Invalid input to argument `multioutput`. Choose one of the following: {allowed_multioutput}'
|
|
|
|
)
|
|
|
|
self.multioutput = multioutput
|
2020-10-09 02:58:33 +00:00
|
|
|
self.add_state("y", default=[], dist_reduce_fx=None)
|
|
|
|
self.add_state("y_pred", default=[], dist_reduce_fx=None)
|
|
|
|
|
2020-10-21 22:05:59 +00:00
|
|
|
rank_zero_warn(
|
|
|
|
'Metric `ExplainedVariance` will save all targets and'
|
|
|
|
' predictions in buffer. For large datasets this may lead'
|
|
|
|
' to large memory footprint.'
|
|
|
|
)
|
2020-10-09 23:23:12 +00:00
|
|
|
|
2020-10-09 02:58:33 +00:00
|
|
|
def update(self, preds: torch.Tensor, target: torch.Tensor):
|
|
|
|
"""
|
|
|
|
Update state with predictions and targets.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
preds: Predictions from model
|
|
|
|
target: Ground truth values
|
|
|
|
"""
|
2020-10-21 22:05:59 +00:00
|
|
|
preds, target = _explained_variance_update(preds, target)
|
2020-10-09 02:58:33 +00:00
|
|
|
self.y_pred.append(preds)
|
2020-10-21 22:05:59 +00:00
|
|
|
self.y.append(target)
|
2020-10-09 02:58:33 +00:00
|
|
|
|
|
|
|
def compute(self):
|
|
|
|
"""
|
|
|
|
Computes explained variance over state.
|
|
|
|
"""
|
2020-10-21 22:05:59 +00:00
|
|
|
preds = torch.cat(self.y_pred, dim=0)
|
|
|
|
target = torch.cat(self.y, dim=0)
|
|
|
|
return _explained_variance_compute(preds, target, self.multioutput)
|