lightning/pytorch_lightning/metrics/utils.py

333 lines
11 KiB
Python
Raw Normal View History

2020-10-13 11:18:07 +00:00
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Mean Average Precision metric for Information Retrieval (1/5) (#5032) * init information retrieval metrics * changed retrieval metrics names, expanded arguments and fixed typo * added 'Retrieval' prefix to metrics and fixed conflict with already-present 'average_precision' file * improved code formatting * pep8 code compatibility * features/implemented new Mean Average Precision metrics for Information Retrieval + doc * fixed pep8 compatibility * removed threshold parameter and fixed typo on types in RetrievalMAP and improved doc * improved doc, put first class-specific args in RetrievalMetric and transformed RetrievalMetric in abstract class * implemented tests for functional and class metric. fixed typo when input tensors are empty or when all targets are False * fixed typos in doc and changed torch.true_divide to torch.div * fixed typos pep8 compatibility * fixed types in long division in ir_average_precision and example in mean_average_precision * RetrievalMetric states are not lists and _metric method accepts predictions and targets for easier extension * updated CHANGELOG file * added '# noqa: F401' flag to not used imports * added double space before '# noqa: F401' flag * Update CHANGELOG.md Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * change get_mini_groups in get_group_indexes * added checks on target inputs * minor refactoring for code cleanness * split tests over exception raising in separate function && refactored test code into multiple functions * fixed pep8 compatibility * implemented suggestions of @SkafteNicki * fixed imports for isort and added types annontations to functions in test_map.py * isort on test_map and fixed typing * isort on retrieval and on __init__.py and utils.py in metrics package * fixed typo in pytorch_lightning/metrics/__init__.py regarding code style * fixed yapf compatibility * fixed yapf compatibility * fixed typo in doc Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-03-15 11:18:43 +00:00
from typing import List, Optional, Tuple
revamp entire metrics (#3868) * removed metric Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * added new metrics Co-authored-by: Teddy Koker teddy.koker@gmail.com * pep8 Co-authored-by: Teddy Koker teddy.koker@gmail.com * pep8 Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * docs Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * docs Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * win ddp tests skip Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * win ddp tests skip Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * win ddp tests skip Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * win ddp tests skip Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * reset in compute, cache compute Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * reduce_ops handling Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * sync -> sync_dist, type annotations Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * wip docs Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * mean squared error * docstring * added mean ___ error metrics * added mean ___ error metrics * seperated files * accuracy doctest * gpu fix * remove unnecessary mixin * metric and accuracy docstring Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * metric docs Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * pep8, changelog Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * refactor dist utils, pep8 * refactor dist utils, pep8 Co-authored-by: Teddy Koker <teddy.koker@gmail.com>
2020-10-06 21:03:24 +00:00
import torch
revamp entire metrics (#3868) * removed metric Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * added new metrics Co-authored-by: Teddy Koker teddy.koker@gmail.com * pep8 Co-authored-by: Teddy Koker teddy.koker@gmail.com * pep8 Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * docs Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * docs Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * win ddp tests skip Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * win ddp tests skip Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * win ddp tests skip Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * win ddp tests skip Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * reset in compute, cache compute Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * reduce_ops handling Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * sync -> sync_dist, type annotations Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * wip docs Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * mean squared error * docstring * added mean ___ error metrics * added mean ___ error metrics * seperated files * accuracy doctest * gpu fix * remove unnecessary mixin * metric and accuracy docstring Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * metric docs Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * pep8, changelog Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * refactor dist utils, pep8 * refactor dist utils, pep8 Co-authored-by: Teddy Koker <teddy.koker@gmail.com>
2020-10-06 21:03:24 +00:00
from pytorch_lightning.utilities import rank_zero_warn
revamp entire metrics (#3868) * removed metric Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * added new metrics Co-authored-by: Teddy Koker teddy.koker@gmail.com * pep8 Co-authored-by: Teddy Koker teddy.koker@gmail.com * pep8 Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * docs Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * docs Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * win ddp tests skip Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * win ddp tests skip Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * win ddp tests skip Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * win ddp tests skip Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * reset in compute, cache compute Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * reduce_ops handling Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * sync -> sync_dist, type annotations Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * wip docs Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * mean squared error * docstring * added mean ___ error metrics * added mean ___ error metrics * seperated files * accuracy doctest * gpu fix * remove unnecessary mixin * metric and accuracy docstring Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * metric docs Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * pep8, changelog Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * refactor dist utils, pep8 * refactor dist utils, pep8 Co-authored-by: Teddy Koker <teddy.koker@gmail.com>
2020-10-06 21:03:24 +00:00
METRIC_EPS = 1e-6
revamp entire metrics (#3868) * removed metric Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * added new metrics Co-authored-by: Teddy Koker teddy.koker@gmail.com * pep8 Co-authored-by: Teddy Koker teddy.koker@gmail.com * pep8 Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * docs Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * docs Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * win ddp tests skip Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * win ddp tests skip Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * win ddp tests skip Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * win ddp tests skip Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * reset in compute, cache compute Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * reduce_ops handling Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * sync -> sync_dist, type annotations Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * wip docs Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * mean squared error * docstring * added mean ___ error metrics * added mean ___ error metrics * seperated files * accuracy doctest * gpu fix * remove unnecessary mixin * metric and accuracy docstring Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * metric docs Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * pep8, changelog Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * refactor dist utils, pep8 * refactor dist utils, pep8 Co-authored-by: Teddy Koker <teddy.koker@gmail.com>
2020-10-06 21:03:24 +00:00
def dim_zero_cat(x):
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
x = x if isinstance(x, (list, tuple)) else [x]
revamp entire metrics (#3868) * removed metric Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * added new metrics Co-authored-by: Teddy Koker teddy.koker@gmail.com * pep8 Co-authored-by: Teddy Koker teddy.koker@gmail.com * pep8 Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * docs Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * docs Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * win ddp tests skip Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * win ddp tests skip Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * win ddp tests skip Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * win ddp tests skip Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * reset in compute, cache compute Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * reduce_ops handling Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * sync -> sync_dist, type annotations Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * wip docs Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * mean squared error * docstring * added mean ___ error metrics * added mean ___ error metrics * seperated files * accuracy doctest * gpu fix * remove unnecessary mixin * metric and accuracy docstring Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * metric docs Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * pep8, changelog Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * refactor dist utils, pep8 * refactor dist utils, pep8 Co-authored-by: Teddy Koker <teddy.koker@gmail.com>
2020-10-06 21:03:24 +00:00
return torch.cat(x, dim=0)
def dim_zero_sum(x):
return torch.sum(x, dim=0)
def dim_zero_mean(x):
return torch.mean(x, dim=0)
def _flatten(x):
return [item for sublist in x for item in sublist]
def _check_same_shape(pred: torch.Tensor, target: torch.Tensor):
""" Check that predictions and target have the same shape, else raise error """
if pred.shape != target.shape:
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
raise RuntimeError("Predictions and targets are expected to have the same shape")
def _input_format_classification_one_hot(
num_classes: int,
preds: torch.Tensor,
target: torch.Tensor,
threshold: float = 0.5,
multilabel: bool = False
) -> Tuple[torch.Tensor, torch.Tensor]:
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
"""Convert preds and target tensors into one hot spare label tensors
Args:
num_classes: number of classes
preds: either tensor with labels, tensor with probabilities/logits or
multilabel tensor
target: tensor with ground true labels
threshold: float used for thresholding multilabel input
multilabel: boolean flag indicating if input is multilabel
Raises:
ValueError:
If ``preds`` and ``target`` don't have the same number of dimensions
or one additional dimension for ``preds``.
Returns:
preds: one hot tensor of shape [num_classes, -1] with predicted labels
target: one hot tensors of shape [num_classes, -1] with true labels
"""
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
if not (preds.ndim == target.ndim or preds.ndim == target.ndim + 1):
raise ValueError("preds and target must have same number of dimensions, or one additional dimension for preds")
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
if preds.ndim == target.ndim + 1:
# multi class probabilites
preds = torch.argmax(preds, dim=1)
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
if preds.ndim == target.ndim and preds.dtype in (torch.long, torch.int) and num_classes > 1 and not multilabel:
# multi-class
preds = to_onehot(preds, num_classes=num_classes)
target = to_onehot(target, num_classes=num_classes)
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
elif preds.ndim == target.ndim and preds.is_floating_point():
# binary or multilabel probablities
preds = (preds >= threshold).long()
# transpose class as first dim and reshape
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
if preds.ndim > 1:
preds = preds.transpose(1, 0)
target = target.transpose(1, 0)
return preds.reshape(num_classes, -1), target.reshape(num_classes, -1)
Mean Average Precision metric for Information Retrieval (1/5) (#5032) * init information retrieval metrics * changed retrieval metrics names, expanded arguments and fixed typo * added 'Retrieval' prefix to metrics and fixed conflict with already-present 'average_precision' file * improved code formatting * pep8 code compatibility * features/implemented new Mean Average Precision metrics for Information Retrieval + doc * fixed pep8 compatibility * removed threshold parameter and fixed typo on types in RetrievalMAP and improved doc * improved doc, put first class-specific args in RetrievalMetric and transformed RetrievalMetric in abstract class * implemented tests for functional and class metric. fixed typo when input tensors are empty or when all targets are False * fixed typos in doc and changed torch.true_divide to torch.div * fixed typos pep8 compatibility * fixed types in long division in ir_average_precision and example in mean_average_precision * RetrievalMetric states are not lists and _metric method accepts predictions and targets for easier extension * updated CHANGELOG file * added '# noqa: F401' flag to not used imports * added double space before '# noqa: F401' flag * Update CHANGELOG.md Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * change get_mini_groups in get_group_indexes * added checks on target inputs * minor refactoring for code cleanness * split tests over exception raising in separate function && refactored test code into multiple functions * fixed pep8 compatibility * implemented suggestions of @SkafteNicki * fixed imports for isort and added types annontations to functions in test_map.py * isort on test_map and fixed typing * isort on retrieval and on __init__.py and utils.py in metrics package * fixed typo in pytorch_lightning/metrics/__init__.py regarding code style * fixed yapf compatibility * fixed yapf compatibility * fixed typo in doc Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-03-15 11:18:43 +00:00
def get_group_indexes(idx: torch.Tensor) -> List[torch.Tensor]:
"""
Given an integer `torch.Tensor` `idx`, return a `torch.Tensor` of indexes for
each different value in `idx`.
Args:
idx: a `torch.Tensor` of integers
Return:
A list of integer `torch.Tensor`s
Example:
>>> indexes = torch.tensor([0, 0, 0, 1, 1, 1, 1])
>>> groups = get_group_indexes(indexes)
>>> groups
[tensor([0, 1, 2]), tensor([3, 4, 5, 6])]
"""
indexes = dict()
for i, _id in enumerate(idx):
_id = _id.item()
if _id in indexes:
indexes[_id] += [i]
else:
indexes[_id] = [i]
return [torch.tensor(x, dtype=torch.int64) for x in indexes.values()]
def to_onehot(
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
label_tensor: torch.Tensor,
num_classes: Optional[int] = None,
) -> torch.Tensor:
"""
Converts a dense label tensor to one-hot format
Args:
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
label_tensor: dense label tensor, with shape [N, d1, d2, ...]
num_classes: number of classes C
Returns:
A sparse label tensor with shape [N, C, d1, d2, ...]
Example:
>>> from pytorch_lightning.metrics.utils import to_onehot
>>> x = torch.tensor([1, 2, 3])
>>> to_onehot(x)
tensor([[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
"""
if num_classes is None:
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
num_classes = int(label_tensor.max().detach().item() + 1)
tensor_onehot = torch.zeros(
label_tensor.shape[0],
num_classes,
*label_tensor.shape[1:],
dtype=label_tensor.dtype,
device=label_tensor.device,
)
index = label_tensor.long().unsqueeze(1).expand_as(tensor_onehot)
return tensor_onehot.scatter_(1, index, 1.0)
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
def select_topk(prob_tensor: torch.Tensor, topk: int = 1, dim: int = 1) -> torch.Tensor:
"""
Convert a probability tensor to binary by selecting top-k highest entries.
Args:
prob_tensor: dense tensor of shape ``[..., C, ...]``, where ``C`` is in the
position defined by the ``dim`` argument
topk: number of highest entries to turn into 1s
dim: dimension on which to compare entries
Returns:
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
A binary tensor of the same shape as the input tensor of type torch.int32
Example:
>>> from pytorch_lightning.metrics.utils import select_topk
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
>>> x = torch.tensor([[1.1, 2.0, 3.0], [2.0, 1.0, 0.5]])
>>> select_topk(x, topk=2)
tensor([[0, 1, 1],
[1, 1, 0]], dtype=torch.int32)
"""
zeros = torch.zeros_like(prob_tensor)
Classification metrics overhaul: accuracy metrics (2/n) (#4838) * Add stuff * Change metrics documentation layout * Add stuff * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * PEP 8 compliance * Division with float * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update to new top_k default * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Split accuracy and hamming loss * Remove old redundant accuracy * Minor changes * Fix imports * Improve docstring descriptions * Fix edge case and simplify testing * Fix docs * PEP8 * Reorder imports * Update changelog * Update docstring * Update docstring * Reverse formatting changes for tests * Change parameter order * Remove formatting changes 2/2 * Remove formatting 3/3 * . * Improve description of top_k parameter * Apply suggestions from code review * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Remove unneeded assert * Update pytorch_lightning/metrics/functional/accuracy.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Remove unneeded assert * Explicit checking of parameter values * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Apply suggestions from code review * Fix top_k checking * PEP8 * Don't check dist_sync in test * add back check_dist_sync_on_step * Make sure half-precision inputs are transformed (#5013) * Fix typo * Rename hamming loss to hamming distance * Fix tests for half precision * Fix docs underline length * Fix doc undeline length * Replace mdmc_accuracy parameter with subset_accuracy * Update changelog * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Suggestions from code review * Fix number in docs * Update pytorch_lightning/metrics/classification/accuracy.py * Replace topk by argsort in select_topk * Fix changelog * Add test for wrong params * Add Google Colab badges (#5111) * Add colab badges to notebook Add colab badges to notebook to notebooks 4 & 5 * Add colab badges Co-authored-by: chaton <thomas@grid.ai> * Fix hanging metrics tests (#5134) * Use torch.topk again as ddp hanging tests fixed in #5134 * Fix unwanted notebooks change * Fix too long line in hamming_distance * Apply suggestions from code review * Apply suggestions from code review * protect * Update CHANGELOG.md Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com> Co-authored-by: Roger Shieh <sh.rog@protonmail.ch> Co-authored-by: Shachar Mirkin <shacharmirkin@gmail.com>
2020-12-21 15:42:51 +00:00
topk_tensor = zeros.scatter(dim, prob_tensor.topk(k=topk, dim=dim).indices, 1.0)
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
return topk_tensor.int()
def to_categorical(tensor: torch.Tensor, argmax_dim: int = 1) -> torch.Tensor:
"""
Converts a tensor of probabilities to a dense label tensor
Args:
tensor: probabilities to get the categorical label [N, d1, d2, ...]
argmax_dim: dimension to apply
Return:
A tensor with categorical labels [N, d2, ...]
Example:
>>> from pytorch_lightning.metrics.utils import to_categorical
>>> x = torch.tensor([[0.2, 0.5], [0.9, 0.1]])
>>> to_categorical(x)
tensor([1, 0])
"""
return torch.argmax(tensor, dim=argmax_dim)
def get_num_classes(
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
pred: torch.Tensor,
target: torch.Tensor,
num_classes: Optional[int] = None,
) -> int:
"""
Calculates the number of classes for a given prediction and target tensor.
Args:
pred: predicted values
target: true labels
num_classes: number of classes if known
Return:
An integer that represents the number of classes.
"""
num_target_classes = int(target.max().detach().item() + 1)
num_pred_classes = int(pred.max().detach().item() + 1)
num_all_classes = max(num_target_classes, num_pred_classes)
if num_classes is None:
num_classes = num_all_classes
elif num_classes != num_all_classes:
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
rank_zero_warn(
f"You have set {num_classes} number of classes which is"
f" different from predicted ({num_pred_classes}) and"
f" target ({num_target_classes}) number of classes",
RuntimeWarning,
)
return num_classes
def reduce(to_reduce: torch.Tensor, reduction: str) -> torch.Tensor:
"""
Reduces a given tensor by a given reduction method
Args:
to_reduce : the tensor, which shall be reduced
reduction : a string specifying the reduction method ('elementwise_mean', 'none', 'sum')
Return:
reduced Tensor
Raise:
ValueError if an invalid reduction parameter was given
"""
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
if reduction == "elementwise_mean":
return torch.mean(to_reduce)
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
if reduction == "none":
return to_reduce
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
if reduction == "sum":
return torch.sum(to_reduce)
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
raise ValueError("Reduction parameter unknown.")
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
def class_reduce(
num: torch.Tensor, denom: torch.Tensor, weights: torch.Tensor, class_reduction: str = "none"
) -> torch.Tensor:
"""
Function used to reduce classification metrics of the form `num / denom * weights`.
For example for calculating standard accuracy the num would be number of
true positives per class, denom would be the support per class, and weights
would be a tensor of 1s
Args:
num: numerator tensor
denom: denominator tensor
weights: weights for each class
class_reduction: reduction method for multiclass problems
- ``'micro'``: calculate metrics globally (default)
- ``'macro'``: calculate metrics for each label, and find their unweighted mean.
- ``'weighted'``: calculate metrics for each label, and find their weighted mean.
- ``'none'`` or ``None``: returns calculated metric per class
Raises:
ValueError:
If ``class_reduction`` is none of ``"micro"``, ``"macro"``, ``"weighted"``, ``"none"`` or ``None``.
"""
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
valid_reduction = ("micro", "macro", "weighted", "none", None)
if class_reduction == "micro":
fraction = torch.sum(num) / torch.sum(denom)
else:
fraction = num / denom
# We need to take care of instances where the denom can be 0
# for some (or all) classes which will produce nans
fraction[fraction != fraction] = 0
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
if class_reduction == "micro":
return fraction
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
elif class_reduction == "macro":
return torch.mean(fraction)
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
elif class_reduction == "weighted":
return torch.sum(fraction * (weights.float() / torch.sum(weights)))
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
elif class_reduction == "none" or class_reduction is None:
return fraction
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
raise ValueError(
f"Reduction parameter {class_reduction} unknown."
f" Choose between one of these: {valid_reduction}"
Classification metrics overhaul: input formatting standardization (1/n) (#4837) * Add stuff * Change metrics documentation layout * Change testing utils * Replace len(*.shape) with *.ndim * More descriptive error message for input formatting * Replace movedim with permute * Style changes in error messages * More error message style improvements * Fix typo in docs * Add more descriptive variable names in utils * Change internal var names * Break down error checking for inputs into separate functions * Remove the (N, ..., C) option in MD-MC * Simplify select_topk * Remove detach for inputs * Fix typos * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/metrics.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Minor error message changes * Update pytorch_lightning/metrics/utils.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Reuse case from validation in formatting * Refactor code in _input_format_classification * Small improvements * PEP 8 * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update docs/source/metrics.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/metrics/classification/utils.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Apply suggestions from code review Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Alphabetical reordering of regression metrics * Change default value of top_k and add error checking * Extract basic validation into separate function * Update desciption of parameters in input formatting * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * Check that probabilities in preds sum to 1 (for MC) * Fix coverage * Minor changes * Fix edge case and simplify testing Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
2020-12-07 16:49:35 +00:00
)
def _stable_1d_sort(x: torch, N: int = 2049):
"""
Stable sort of 1d tensors. Pytorch defaults to a stable sorting algorithm
if number of elements are larger than 2048. This function pads the tensors,
makes the sort and returns the sorted array (with the padding removed)
See this discussion: https://discuss.pytorch.org/t/is-torch-sort-stable/20714
Raises:
ValueError:
If dim of ``x`` is greater than 1 since stable sort works with only 1d tensors.
"""
if x.ndim > 1:
raise ValueError('Stable sort only works on 1d tensors')
n = x.numel()
if N - n > 0:
x_max = x.max()
x = torch.cat([x, (x_max + 1) * torch.ones(N - n, dtype=x.dtype, device=x.device)], 0)
x_sort = x.sort()
i = min(N, n)
return x_sort.values[:i], x_sort.indices[:i]