import logging
import os
from typing import TYPE_CHECKING, Any
import torch
from pytorch_lightning.accelerators.accelerator import Accelerator
from pytorch_lightning.plugins import DataParallelPlugin
from pytorch_lightning.utilities.exceptions import MisconfigurationException
if TYPE_CHECKING:
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.trainer.trainer import Trainer
_log = logging.getLogger(__name__)
class GPUAccelerator(Accelerator):
def setup(self, trainer: 'Trainer', model: 'LightningModule') -> None:
"""
Raises:
MisconfigurationException:
If the selected device is not GPU.
if "cuda" not in str(self.root_device):
raise MisconfigurationException(f"Device should be GPU, got {self.root_device} instead")
self.set_nvidia_flags()
torch.cuda.set_device(self.root_device)
return super().setup(trainer, model)
def on_train_start(self) -> None:
# clear cache before training
# use context because of:
# https://discuss.pytorch.org/t/out-of-memory-when-i-use-torch-cuda-empty-cache/57898
with torch.cuda.device(self.root_device):
torch.cuda.empty_cache()
def on_train_end(self) -> None:
# clean up memory
self.model.cpu()
@staticmethod
def set_nvidia_flags() -> None:
# set the correct cuda visible devices (using pci order)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
all_gpu_ids = ",".join([str(x) for x in range(torch.cuda.device_count())])
devices = os.getenv("CUDA_VISIBLE_DEVICES", all_gpu_ids)
_log.info(f"LOCAL_RANK: {os.getenv('LOCAL_RANK', 0)} - CUDA_VISIBLE_DEVICES: [{devices}]")
def to_device(self, batch: Any) -> Any:
# no need to transfer batch to device in DP mode
# TODO: Add support to allow batch transfer to device in Lightning for DP mode.
if not isinstance(self.training_type_plugin, DataParallelPlugin):
batch = super().to_device(batch)
return batch