lightning/tests/metrics/utils.py

241 lines
8.7 KiB
Python
Raw Normal View History

import os
import pickle
import sys
from functools import partial
from typing import Callable
import numpy as np
import pytest
import torch
from torch.multiprocessing import Pool, set_start_method
from pytorch_lightning.metrics import Metric
NUM_PROCESSES = 2
NUM_BATCHES = 10
BATCH_SIZE = 16
NUM_CLASSES = 5
EXTRA_DIM = 3
THRESHOLD = 0.5
def setup_ddp(rank, world_size):
""" Setup ddp enviroment """
os.environ["MASTER_ADDR"] = 'localhost'
os.environ['MASTER_PORT'] = '8088'
if torch.distributed.is_available() and sys.platform not in ['win32', 'cygwin']:
torch.distributed.init_process_group("gloo", rank=rank, world_size=world_size)
def _class_test(
rank: int,
worldsize: int,
preds: torch.Tensor,
target: torch.Tensor,
metric_class: Metric,
sk_metric: Callable,
dist_sync_on_step: bool,
metric_args: dict = {},
check_dist_sync_on_step: bool = True,
check_batch: bool = True,
atol: float = 1e-8,
):
""" Utility function doing the actual comparison between lightning class metric
and reference metric.
Args:
rank: rank of current process
worldsize: number of processes
preds: torch tensor with predictions
target: torch tensor with targets
metric_class: lightning metric class that should be tested
sk_metric: callable function that is used for comparison
dist_sync_on_step: bool, if true will synchronize metric state across
processes at each ``forward()``
metric_args: dict with additional arguments used for class initialization
check_dist_sync_on_step: bool, if true will check if the metric is also correctly
calculated per batch per device (and not just at the end)
check_batch: bool, if true will check if the metric is also correctly
calculated across devices for each batch (and not just at the end)
"""
# Instanciate lightning metric
metric = metric_class(compute_on_step=True, dist_sync_on_step=dist_sync_on_step, **metric_args)
# verify metrics work after being loaded from pickled state
pickled_metric = pickle.dumps(metric)
metric = pickle.loads(pickled_metric)
for i in range(rank, NUM_BATCHES, worldsize):
batch_result = metric(preds[i], target[i])
if metric.dist_sync_on_step:
if rank == 0:
ddp_preds = torch.stack([preds[i + r] for r in range(worldsize)])
ddp_target = torch.stack([target[i + r] for r in range(worldsize)])
sk_batch_result = sk_metric(ddp_preds, ddp_target)
# assert for dist_sync_on_step
if check_dist_sync_on_step:
assert np.allclose(batch_result.numpy(), sk_batch_result, atol=atol)
else:
sk_batch_result = sk_metric(preds[i], target[i])
# assert for batch
if check_batch:
assert np.allclose(batch_result.numpy(), sk_batch_result, atol=atol)
# check on all batches on all ranks
result = metric.compute()
assert isinstance(result, torch.Tensor)
total_preds = torch.stack([preds[i] for i in range(NUM_BATCHES)])
total_target = torch.stack([target[i] for i in range(NUM_BATCHES)])
sk_result = sk_metric(total_preds, total_target)
# assert after aggregation
assert np.allclose(result.numpy(), sk_result, atol=atol)
def _functional_test(
preds: torch.Tensor,
target: torch.Tensor,
metric_functional: Callable,
sk_metric: Callable,
metric_args: dict = {},
atol: float = 1e-8
):
""" Utility function doing the actual comparison between lightning functional metric
and reference metric.
Args:
preds: torch tensor with predictions
target: torch tensor with targets
metric_functional: lightning metric functional that should be tested
sk_metric: callable function that is used for comparison
metric_args: dict with additional arguments used for class initialization
"""
metric = partial(metric_functional, **metric_args)
for i in range(NUM_BATCHES):
lightning_result = metric(preds[i], target[i])
sk_result = sk_metric(preds[i], target[i])
# assert its the same
assert np.allclose(lightning_result.numpy(), sk_result, atol=atol)
class MetricTester:
""" Class used for efficiently run alot of parametrized tests in ddp mode.
Makes sure that ddp is only setup once and that pool of processes are
used for all tests.
All tests should subclass from this and implement a new method called
`test_metric_name`
where the method `self.run_metric_test` is called inside.
"""
atol = 1e-8
def setup_class(self):
""" Setup the metric class. This will spawn the pool of workers that are
used for metric testing and setup_ddp
"""
try:
set_start_method('spawn')
except RuntimeError:
pass
self.poolSize = NUM_PROCESSES
self.pool = Pool(processes=self.poolSize)
self.pool.starmap(setup_ddp, [(rank, self.poolSize) for rank in range(self.poolSize)])
def teardown_class(self):
""" Close pool of workers """
self.pool.close()
self.pool.join()
def run_functional_metric_test(
self,
preds: torch.Tensor,
target: torch.Tensor,
metric_functional: Callable,
sk_metric: Callable,
metric_args: dict = {}
):
""" Main method that should be used for testing functions. Call this inside
testing method
Args:
preds: torch tensor with predictions
target: torch tensor with targets
metric_functional: lightning metric class that should be tested
sk_metric: callable function that is used for comparison
metric_args: dict with additional arguments used for class initialization
"""
_functional_test(preds=preds,
target=target,
metric_functional=metric_functional,
sk_metric=sk_metric,
metric_args=metric_args,
atol=self.atol)
def run_class_metric_test(
self,
ddp: bool,
preds: torch.Tensor,
target: torch.Tensor,
metric_class: Metric,
sk_metric: Callable,
dist_sync_on_step: bool,
metric_args: dict = {},
check_dist_sync_on_step: bool = True,
check_batch: bool = True,
):
""" Main method that should be used for testing class. Call this inside testing
methods.
Args:
ddp: bool, if running in ddp mode or not
preds: torch tensor with predictions
target: torch tensor with targets
metric_class: lightning metric class that should be tested
sk_metric: callable function that is used for comparison
dist_sync_on_step: bool, if true will synchronize metric state across
processes at each ``forward()``
metric_args: dict with additional arguments used for class initialization
check_dist_sync_on_step: bool, if true will check if the metric is also correctly
calculated per batch per device (and not just at the end)
check_batch: bool, if true will check if the metric is also correctly
calculated across devices for each batch (and not just at the end)
"""
if ddp:
if sys.platform == "win32":
pytest.skip("DDP not supported on windows")
self.pool.starmap(
partial(
_class_test,
preds=preds,
target=target,
metric_class=metric_class,
sk_metric=sk_metric,
dist_sync_on_step=dist_sync_on_step,
metric_args=metric_args,
check_dist_sync_on_step=check_dist_sync_on_step,
check_batch=check_batch,
atol=self.atol,
),
[(rank, self.poolSize) for rank in range(self.poolSize)],
)
else:
_class_test(
0,
1,
preds=preds,
target=target,
metric_class=metric_class,
sk_metric=sk_metric,
dist_sync_on_step=dist_sync_on_step,
metric_args=metric_args,
check_dist_sync_on_step=check_dist_sync_on_step,
check_batch=check_batch,
atol=self.atol,
)