56 lines
2.0 KiB
Python
56 lines
2.0 KiB
Python
|
import warnings
|
||
|
|
||
|
from .base import Callback
|
||
|
|
||
|
|
||
|
class GradientAccumulationScheduler(Callback):
|
||
|
r"""
|
||
|
Change gradient accumulation factor according to scheduling.
|
||
|
|
||
|
Args:
|
||
|
scheduling (dict): scheduling in format {epoch: accumulation_factor}
|
||
|
.. warning:: Epochs indexing starts from "1" until v0.6.x, but will start from "0" in
|
||
|
v0.8.0.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
from pytorch_lightning import Trainer
|
||
|
from pytorch_lightning.callbacks import GradientAccumulationScheduler
|
||
|
|
||
|
# at epoch 5 start accumulating every 2 batches
|
||
|
accumulator = GradientAccumulationScheduler(scheduling: {5: 2})
|
||
|
Trainer(accumulate_grad_batches=accumulator)
|
||
|
"""
|
||
|
|
||
|
def __init__(self, scheduling: dict):
|
||
|
super().__init__()
|
||
|
|
||
|
if not scheduling: # empty dict error
|
||
|
raise TypeError("Empty dict cannot be interpreted correct")
|
||
|
|
||
|
for key in scheduling:
|
||
|
if not isinstance(key, int) or not isinstance(scheduling[key], int):
|
||
|
raise TypeError("All epoches and accumulation factor must be integers")
|
||
|
|
||
|
minimal_epoch = min(scheduling.keys())
|
||
|
warnings.warn('Epochs indexing of `scheduling` starts from "1" until v0.6.x,'
|
||
|
' but will start from "0" in v0.8.0.', DeprecationWarning)
|
||
|
if minimal_epoch < 1:
|
||
|
msg = f"Epochs indexing from 1, epoch {minimal_epoch} cannot be interpreted correct"
|
||
|
raise IndexError(msg)
|
||
|
if minimal_epoch != 1: # if user didnt define first epoch accumulation factor
|
||
|
scheduling.update({1: 1})
|
||
|
|
||
|
self.scheduling = scheduling
|
||
|
self.epochs = sorted(scheduling.keys())
|
||
|
|
||
|
def on_epoch_begin(self):
|
||
|
trainer = self.trainer
|
||
|
# indexing epochs from 1 (until v0.6.x)
|
||
|
# In v0.8.0, ` + 1` should be removed.
|
||
|
epoch = trainer.current_epoch + 1
|
||
|
for i in reversed(range(len(self.epochs))):
|
||
|
if epoch >= self.epochs[i]:
|
||
|
trainer.accumulate_grad_batches = self.scheduling.get(self.epochs[i])
|
||
|
break
|