lightning/pytorch_lightning/plugins/precision/native_amp.py

80 lines
3.0 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import contextmanager
from typing import Generator
import torch
from pytorch_lightning.core import LightningModule
from pytorch_lightning.plugins.precision.mixed import MixedPrecisionPlugin
from pytorch_lightning.utilities import AMPType
from pytorch_lightning.utilities.exceptions import MisconfigurationException
class NativeMixedPrecisionPlugin(MixedPrecisionPlugin):
def __init__(self):
self.backend = AMPType.NATIVE
self.scaler = torch.cuda.amp.GradScaler()
def pre_optimizer_step(self, optimizer: torch.optim.Optimizer, optimizer_idx: int) -> None:
"""always called before the optimizer step.
Checks that the optimizer is not LBFGS, as this one is not supported by native amp
"""
if isinstance(optimizer, torch.optim.LBFGS):
raise MisconfigurationException(
f"native PyTorch amp and lbfgs are not compatible (optimizer {optimizer_idx})."
" To request, please file a Github issue in PyTorch and tag @mcarilli"
)
def post_optimizer_step(self, optimizer: torch.optim.Optimizer, optimizer_idx: int) -> None:
"""Updates the GradScaler"""
self.scaler.update()
def backward(
self,
model: LightningModule,
closure_loss: torch.Tensor,
optimizer: torch.optim.Optimizer,
opt_idx: int,
should_accumulate: bool,
*args,
**kwargs,
) -> torch.Tensor:
"""performs the actual backpropagation
Args:
model: the model to be optimized
closure_loss: the loss value obtained from the closure
optimizer: the optimizer to perform the step lateron
opt_idx: the optimizer's index
should_accumulate: whether to accumulate gradients or not
"""
closure_loss = self.scaler.scale(closure_loss)
automatic_optimization = model.automatic_optimization
closure_loss = super().backward(model, closure_loss, optimizer, opt_idx, should_accumulate, *args, **kwargs)
# unscale gradient to allow analyze within `on_after_backward`
if not should_accumulate and automatic_optimization:
self.scaler.unscale_(optimizer)
return closure_loss
@contextmanager
def train_step_context(self) -> Generator[torch.cuda.amp.autocast, None, None]:
"""Enable autocast context"""
yield torch.cuda.amp.autocast()