lightning/pytorch_lightning/metrics/functional/explained_variance.py

86 lines
3.4 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Union, Tuple, Sequence
import torch
from pytorch_lightning.metrics.utils import _check_same_shape
def _explained_variance_update(preds: torch.Tensor, target: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
_check_same_shape(preds, target)
return preds, target
def _explained_variance_compute(preds: torch.Tensor,
target: torch.Tensor,
multioutput: str = 'uniform_average',
) -> Union[torch.Tensor, Sequence[torch.Tensor]]:
diff_avg = torch.mean(target - preds, dim=0)
numerator = torch.mean((target - preds - diff_avg) ** 2, dim=0)
target_avg = torch.mean(target, dim=0)
denominator = torch.mean((target - target_avg) ** 2, dim=0)
# Take care of division by zero
nonzero_numerator = numerator != 0
nonzero_denominator = denominator != 0
valid_score = nonzero_numerator & nonzero_denominator
output_scores = torch.ones_like(diff_avg)
output_scores[valid_score] = 1.0 - (numerator[valid_score] / denominator[valid_score])
output_scores[nonzero_numerator & ~nonzero_denominator] = 0.
# Decide what to do in multioutput case
# Todo: allow user to pass in tensor with weights
if multioutput == 'raw_values':
return output_scores
if multioutput == 'uniform_average':
return torch.mean(output_scores)
if multioutput == 'variance_weighted':
denom_sum = torch.sum(denominator)
return torch.sum(denominator / denom_sum * output_scores)
def explained_variance(preds: torch.Tensor,
target: torch.Tensor,
multioutput: str = 'uniform_average',
) -> Union[torch.Tensor, Sequence[torch.Tensor]]:
"""
Computes explained variance.
Args:
pred: estimated labels
target: ground truth labels
multioutput: Defines aggregation in the case of multiple output scores. Can be one
of the following strings (default is `'uniform_average'`.):
* `'raw_values'` returns full set of scores
* `'uniform_average'` scores are uniformly averaged
* `'variance_weighted'` scores are weighted by their individual variances
Example:
>>> from pytorch_lightning.metrics.functional import explained_variance
>>> target = torch.tensor([3, -0.5, 2, 7])
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
>>> explained_variance(preds, target)
tensor(0.9572)
>>> target = torch.tensor([[0.5, 1], [-1, 1], [7, -6]])
>>> preds = torch.tensor([[0, 2], [-1, 2], [8, -5]])
>>> explained_variance(preds, target, multioutput='raw_values')
tensor([0.9677, 1.0000])
"""
preds, target = _explained_variance_update(preds, target)
return _explained_variance_compute(preds, target, multioutput)