2020-10-13 11:18:07 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
2020-07-31 11:53:08 +00:00
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
import torchtext
|
|
|
|
from torchtext.data.example import Example
|
|
|
|
|
|
|
|
from pytorch_lightning.utilities.apply_func import move_data_to_device
|
|
|
|
|
|
|
|
|
|
|
|
def _get_torchtext_data_iterator(include_lengths=False):
|
|
|
|
text_field = torchtext.data.Field(sequential=True, pad_first=False, # nosec
|
|
|
|
init_token="<s>", eos_token="</s>", # nosec
|
|
|
|
include_lengths=include_lengths) # nosec
|
|
|
|
|
|
|
|
example1 = Example.fromdict({"text": "a b c a c"}, {"text": ("text", text_field)})
|
|
|
|
example2 = Example.fromdict({"text": "b c a a"}, {"text": ("text", text_field)})
|
|
|
|
example3 = Example.fromdict({"text": "c b a"}, {"text": ("text", text_field)})
|
|
|
|
|
|
|
|
dataset = torchtext.data.Dataset(
|
|
|
|
[example1, example2, example3],
|
|
|
|
{"text": text_field},
|
|
|
|
)
|
|
|
|
text_field.build_vocab(dataset)
|
|
|
|
|
|
|
|
iterator = torchtext.data.Iterator(dataset, batch_size=3,
|
|
|
|
sort_key=None, device=None,
|
|
|
|
batch_size_fn=None,
|
|
|
|
train=True, repeat=False, shuffle=None,
|
|
|
|
sort=None, sort_within_batch=None)
|
|
|
|
return iterator, text_field
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('include_lengths', [False, True])
|
|
|
|
@pytest.mark.parametrize(['device'], [pytest.param(torch.device('cuda', 0))])
|
|
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test assumes GPU machine")
|
|
|
|
def test_batch_move_data_to_device_torchtext_include_lengths(include_lengths, device):
|
|
|
|
data_iterator, _ = _get_torchtext_data_iterator(include_lengths=include_lengths)
|
|
|
|
data_iter = iter(data_iterator)
|
|
|
|
batch = next(data_iter)
|
|
|
|
batch_on_device = move_data_to_device(batch, device)
|
|
|
|
|
|
|
|
if include_lengths:
|
|
|
|
# tensor with data
|
|
|
|
assert (batch_on_device.text[0].device == device)
|
|
|
|
# tensor with length of data
|
|
|
|
assert (batch_on_device.text[1].device == device)
|
|
|
|
else:
|
|
|
|
assert (batch_on_device.text.device == device)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('include_lengths', [False, True])
|
|
|
|
def test_batch_move_data_to_device_torchtext_include_lengths_cpu(include_lengths):
|
|
|
|
test_batch_move_data_to_device_torchtext_include_lengths(include_lengths, torch.device('cpu'))
|