lightning/pytorch_lightning/trainer/connectors/model_connector.py

52 lines
2.0 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Root module for all distributed operations in Lightning.
Currently supports training on CPU, GPU (dp, ddp, ddp2, horovod) and TPU.
"""
class ModelConnector:
def __init__(self, trainer):
self.trainer = trainer
def copy_trainer_model_properties(self, model):
ref_model = self._get_reference_model(model)
automatic_optimization = ref_model.automatic_optimization and self.trainer.train_loop.automatic_optimization
self.trainer.train_loop.automatic_optimization = automatic_optimization
for m in [model, ref_model]:
m.trainer = self.trainer
m.logger = self.trainer.logger
m._device_type = str(self.trainer._device_type)
m._distrib_type = str(self.trainer._distrib_type)
m.use_amp = self.trainer.amp_backend is not None
m.testing = self.trainer.testing
m.tpu_local_core_rank = self.trainer.tpu_local_core_rank
m.tpu_global_core_rank = self.trainer.tpu_global_core_rank
m.precision = self.trainer.precision
m.global_rank = self.trainer.global_rank
m.local_rank = self.trainer.local_rank
def get_model(self):
return self._get_reference_model(self.trainer.model)
def _get_reference_model(self, model):
if self.trainer.accelerator_backend:
return self.trainer.accelerator_backend.get_reference_model(model)
return model