2021-02-22 11:01:54 +00:00
|
|
|
from unittest.mock import MagicMock, Mock
|
2021-01-13 19:35:42 +00:00
|
|
|
|
|
|
|
import pytest
|
|
|
|
import torch
|
2021-01-31 11:08:16 +00:00
|
|
|
from torch.nn import DataParallel
|
2021-01-13 19:35:42 +00:00
|
|
|
|
2021-01-31 11:08:16 +00:00
|
|
|
from pytorch_lightning.overrides import LightningDistributedModule
|
|
|
|
from pytorch_lightning.overrides.data_parallel import (
|
|
|
|
LightningParallelModule,
|
|
|
|
python_scalar_to_tensor,
|
|
|
|
unsqueeze_scalar_tensor,
|
|
|
|
)
|
2021-01-27 16:38:14 +00:00
|
|
|
from pytorch_lightning.trainer.states import RunningStage
|
2021-02-09 10:10:52 +00:00
|
|
|
from tests.helpers import BoringModel
|
2021-03-02 09:36:01 +00:00
|
|
|
from tests.helpers.runif import RunIf
|
2021-01-13 19:35:42 +00:00
|
|
|
|
|
|
|
|
2021-01-31 11:08:16 +00:00
|
|
|
@pytest.mark.parametrize("wrapper_class", [
|
|
|
|
LightningParallelModule,
|
|
|
|
LightningDistributedModule,
|
|
|
|
])
|
2021-03-06 17:15:21 +00:00
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"stage", [
|
|
|
|
("training", "training_step"),
|
|
|
|
("testing", "test_step"),
|
|
|
|
("validating", "validation_step"),
|
|
|
|
("predicting", "predict"),
|
|
|
|
]
|
|
|
|
)
|
2021-03-06 12:40:19 +00:00
|
|
|
def test_lightning_wrapper_module_methods(wrapper_class, stage):
|
2021-01-31 11:08:16 +00:00
|
|
|
""" Test that the LightningWrapper redirects .forward() to the LightningModule methods. """
|
2021-01-13 19:35:42 +00:00
|
|
|
pl_module = MagicMock()
|
2021-01-31 11:08:16 +00:00
|
|
|
wrapped_module = wrapper_class(pl_module)
|
2021-01-13 19:35:42 +00:00
|
|
|
|
|
|
|
batch = torch.rand(5)
|
|
|
|
batch_idx = 3
|
|
|
|
|
2021-03-06 12:40:19 +00:00
|
|
|
prop, step = stage
|
|
|
|
pl_module.trainer.sanity_checking = False
|
2021-03-06 17:15:21 +00:00
|
|
|
|
2021-03-06 12:40:19 +00:00
|
|
|
for p in ("training", "testing", "validating", "predicting"):
|
|
|
|
setattr(pl_module.trainer, p, p == prop)
|
2021-01-13 19:35:42 +00:00
|
|
|
|
2021-01-31 11:08:16 +00:00
|
|
|
wrapped_module(batch, batch_idx)
|
2021-03-06 12:40:19 +00:00
|
|
|
getattr(pl_module, step).assert_called_with(batch, batch_idx)
|
2021-01-13 19:35:42 +00:00
|
|
|
|
2021-01-31 11:08:16 +00:00
|
|
|
|
2021-02-06 13:22:10 +00:00
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"inp,expected", [
|
|
|
|
[torch.tensor(1.0), torch.tensor([1.0])],
|
|
|
|
[torch.tensor([2.0]), torch.tensor([2.0])],
|
|
|
|
[torch.ones(3, 4, 5), torch.ones(3, 4, 5)],
|
|
|
|
]
|
|
|
|
)
|
2021-01-31 11:08:16 +00:00
|
|
|
def test_unsqueeze_scalar_tensor(inp, expected):
|
|
|
|
""" Test that the utility function unsqueezes only scalar tensors. """
|
|
|
|
assert torch.all(unsqueeze_scalar_tensor(inp).eq(expected))
|
|
|
|
|
|
|
|
|
2021-03-02 08:03:32 +00:00
|
|
|
@RunIf(min_gpus=2)
|
2021-01-31 11:08:16 +00:00
|
|
|
def test_lightning_parallel_module_unsqueeze_scalar():
|
|
|
|
""" Test that LightningParallelModule takes care of un-squeezeing 0-dim tensors. """
|
|
|
|
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
|
|
output = super().training_step(batch, batch_idx)
|
|
|
|
loss = output["loss"]
|
|
|
|
loss = loss.squeeze()
|
|
|
|
assert loss.dim() == 0
|
|
|
|
# PyTorch usually warns about 0-dim tensors returned in DP
|
|
|
|
return {"loss": loss}
|
|
|
|
|
|
|
|
model = TestModel()
|
2021-02-22 11:01:54 +00:00
|
|
|
model.trainer = Mock()
|
|
|
|
model.trainer._running_stage = RunningStage.TRAINING
|
2021-01-31 11:08:16 +00:00
|
|
|
batch = torch.rand(2, 32).cuda()
|
|
|
|
batch_idx = 0
|
|
|
|
|
|
|
|
wrapped_model = LightningParallelModule(model).cuda()
|
|
|
|
dp_module = DataParallel(wrapped_model, device_ids=[0, 1])
|
|
|
|
|
|
|
|
output = wrapped_model(batch, batch_idx)
|
|
|
|
assert output["loss"].dim() == 1
|
|
|
|
|
|
|
|
with pytest.warns(None) as record:
|
|
|
|
output = dp_module(batch, batch_idx)
|
|
|
|
|
|
|
|
assert output["loss"].dim() == 1
|
|
|
|
assert not record
|
|
|
|
|
|
|
|
|
2021-02-06 13:22:10 +00:00
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"inp,expected", [
|
|
|
|
[1.0, torch.tensor([1.0])],
|
|
|
|
[2, torch.tensor([2.0])],
|
|
|
|
[True, torch.tensor([True])],
|
|
|
|
]
|
|
|
|
)
|
2021-01-31 11:08:16 +00:00
|
|
|
def test_python_scalar_to_tensor(inp, expected):
|
|
|
|
assert torch.all(python_scalar_to_tensor(inp).eq(expected))
|
|
|
|
|
|
|
|
|
2021-03-02 08:03:32 +00:00
|
|
|
@RunIf(min_gpus=1)
|
2021-02-06 13:22:10 +00:00
|
|
|
@pytest.mark.parametrize("device", [torch.device("cpu"), torch.device("cuda", 0)])
|
2021-01-31 11:08:16 +00:00
|
|
|
def test_lightning_parallel_module_python_scalar_conversion(device):
|
|
|
|
""" Test that LightningParallelModule can convert Python scalars to tensors. """
|
|
|
|
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
|
|
output = super().training_step(batch, batch_idx)
|
|
|
|
# PyTorch DP does not support Python scalars, Lightning converts them to tensors
|
|
|
|
output.update({"python scalar": 12.3})
|
|
|
|
return output
|
|
|
|
|
2021-03-01 15:15:52 +00:00
|
|
|
model = TestModel().to(device)
|
2021-02-22 11:01:54 +00:00
|
|
|
model.trainer = Mock()
|
|
|
|
model.trainer._running_stage = RunningStage.TRAINING
|
2021-01-31 11:08:16 +00:00
|
|
|
batch = torch.rand(2, 32).to(device)
|
|
|
|
batch_idx = 0
|
|
|
|
|
|
|
|
wrapped_model = LightningParallelModule(model)
|
|
|
|
output = wrapped_model(batch, batch_idx)
|
|
|
|
assert output["python scalar"] == torch.tensor([12.3], device=device)
|