2022-04-19 18:15:47 +00:00
:orphan:
.. _gpu_intermediate:
GPU training (Intermediate)
===========================
**Audience:** Users looking to train across machines or experiment with different scaling techniques.
----
2024-02-27 03:29:26 +00:00
Distributed training strategies
2022-04-19 18:15:47 +00:00
-------------------------------
Lightning supports multiple ways of doing distributed training.
2024-02-27 03:29:26 +00:00
- Regular (`` strategy='ddp' `` )
- Spawn (`` strategy='ddp_spawn' `` )
- Notebook/Fork (`` strategy='ddp_notebook' `` )
2023-07-03 18:16:45 +00:00
.. video :: https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/yt/Trainer+flags+4-+multi+node+training_3.mp4
:poster: https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/yt_thumbs/thumb_multi_gpus.png
:width: 400
2022-04-19 18:15:47 +00:00
.. note ::
2023-02-20 11:20:50 +00:00
If you request multiple GPUs or nodes without setting a strategy, DDP will be automatically used.
2022-04-19 18:15:47 +00:00
For a deeper understanding of what Lightning is doing, feel free to read this
`guide <https://medium.com/@_willfalcon/9-tips-for-training-lightning-fast-neural-networks-in-pytorch-8e63a502f565> `_ .
2024-02-27 03:29:26 +00:00
----
2022-04-19 18:15:47 +00:00
Distributed Data Parallel
^^^^^^^^^^^^^^^^^^^^^^^^^
:class: `~torch.nn.parallel.DistributedDataParallel` (DDP) works as follows:
1. Each GPU across each node gets its own process.
2. Each GPU gets visibility into a subset of the overall dataset. It will only ever see that subset.
3. Each process inits the model.
4. Each process performs a full forward and backward pass in parallel.
5. The gradients are synced and averaged across all processes.
6. Each process updates its optimizer.
2024-02-27 03:29:26 +00:00
|
2022-04-19 18:15:47 +00:00
.. code-block :: python
# train on 8 GPUs (same machine (ie: node))
trainer = Trainer(accelerator="gpu", devices=8, strategy="ddp")
# train on 32 GPUs (4 nodes)
trainer = Trainer(accelerator="gpu", devices=8, strategy="ddp", num_nodes=4)
This Lightning implementation of DDP calls your script under the hood multiple times with the correct environment
variables:
.. code-block :: bash
# example for 3 GPUs DDP
MASTER_ADDR=localhost MASTER_PORT=random() WORLD_SIZE=3 NODE_RANK=0 LOCAL_RANK=0 python my_file.py --accelerator 'gpu' --devices 3 --etc
2024-02-27 03:29:26 +00:00
MASTER_ADDR=localhost MASTER_PORT=random() WORLD_SIZE=3 NODE_RANK=0 LOCAL_RANK=1 python my_file.py --accelerator 'gpu' --devices 3 --etc
MASTER_ADDR=localhost MASTER_PORT=random() WORLD_SIZE=3 NODE_RANK=0 LOCAL_RANK=2 python my_file.py --accelerator 'gpu' --devices 3 --etc
2022-04-19 18:15:47 +00:00
2024-02-27 03:29:26 +00:00
Using DDP this way has a few disadvantages over `` torch.multiprocessing.spawn() `` :
2022-04-19 18:15:47 +00:00
2024-02-27 03:29:26 +00:00
1. All processes (including the main process) participate in training and have the updated state of the model and Trainer state.
2. No multiprocessing pickle errors
3. Easily scales to multi-node training
2022-04-19 18:15:47 +00:00
2024-02-27 03:29:26 +00:00
|
2022-04-19 18:15:47 +00:00
2024-02-27 03:29:26 +00:00
It is NOT possible to use DDP in interactive environments like Jupyter Notebook, Google COLAB, Kaggle, etc.
In these situations you should use `ddp_notebook` .
2022-04-19 18:15:47 +00:00
2024-02-27 03:29:26 +00:00
----
2022-04-19 18:15:47 +00:00
2024-02-27 03:29:26 +00:00
Distributed Data Parallel Spawn
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2022-04-19 18:15:47 +00:00
2024-02-27 03:29:26 +00:00
.. warning :: It is STRONGLY recommended to use DDP for speed and performance.
2022-04-19 18:15:47 +00:00
2024-02-27 03:29:26 +00:00
The `ddp_spawn` strategy is similar to `ddp` except that it uses `` torch.multiprocessing.spawn() `` to start the training processes.
Use this for debugging only, or if you are converting a code base to Lightning that relies on spawn.
2022-04-19 18:15:47 +00:00
.. code-block :: python
# train on 8 GPUs (same machine (ie: node))
trainer = Trainer(accelerator="gpu", devices=8, strategy="ddp_spawn")
We STRONGLY discourage this use because it has limitations (due to Python and PyTorch):
2024-02-27 03:29:26 +00:00
1. After `` .fit() `` , only the model's weights get restored to the main process, but no other state of the Trainer.
2. Does not support multi-node training.
3. It is generally slower than DDP.
2022-04-19 18:15:47 +00:00
2024-02-27 03:29:26 +00:00
----
2022-04-19 18:15:47 +00:00
2022-07-23 13:06:35 +00:00
Distributed Data Parallel in Notebooks
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2022-07-22 16:05:35 +00:00
2022-07-23 13:06:35 +00:00
DDP Notebook/Fork is an alternative to Spawn that can be used in interactive Python and Jupyter notebooks, Google Colab, Kaggle notebooks, and so on:
The Trainer enables it by default when such environments are detected.
2022-07-22 16:05:35 +00:00
.. code-block :: python
# train on 8 GPUs in a Jupyter notebook
2022-07-23 13:06:35 +00:00
trainer = Trainer(accelerator="gpu", devices=8)
# can be set explicitly
trainer = Trainer(accelerator="gpu", devices=8, strategy="ddp_notebook")
# can also be used in non-interactive environments
2022-07-22 16:05:35 +00:00
trainer = Trainer(accelerator="gpu", devices=8, strategy="ddp_fork")
2022-07-23 13:06:35 +00:00
Among the native distributed strategies, regular DDP (`` strategy="ddp" `` ) is still recommended as the go-to strategy over Spawn and Fork/Notebook for its speed and stability but it can only be used with scripts.
2022-07-22 16:05:35 +00:00
2024-02-27 03:29:26 +00:00
----
2022-07-22 16:05:35 +00:00
Comparison of DDP variants and tradeoffs
2024-02-27 03:29:26 +00:00
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2022-07-22 16:05:35 +00:00
.. list-table :: DDP variants and their tradeoffs
:widths: 40 20 20 20
:header-rows: 1
* -
- DDP
- DDP Spawn
2022-07-23 13:06:35 +00:00
- DDP Notebook/Fork
2022-07-22 16:05:35 +00:00
* - Works in Jupyter notebooks / IPython environments
- No
- No
- Yes
* - Supports multi-node
- Yes
- Yes
- Yes
* - Supported platforms
- Linux, Mac, Win
- Linux, Mac, Win
- Linux, Mac
* - Requires all objects to be picklable
- No
- Yes
- No
* - Limitations in the main process
- None
2023-02-20 11:20:50 +00:00
- The state of objects is not up-to-date after returning to the main process (`Trainer.fit()` etc). Only the model parameters get transferred over.
2022-07-22 16:05:35 +00:00
- GPU operations such as moving tensors to the GPU or calling `` torch.cuda `` functions before invoking `` Trainer.fit `` is not allowed.
* - Process creation time
- Slow
- Slow
- Fast
2024-02-27 03:29:26 +00:00
----
2022-04-19 18:15:47 +00:00
2024-02-27 03:29:26 +00:00
TorchRun (TorchElastic)
-----------------------
Lightning supports the use of TorchRun (previously known as TorchElastic) to enable fault-tolerant and elastic distributed job scheduling.
To use it, specify the DDP strategy and the number of GPUs you want to use in the Trainer.
2022-04-19 18:15:47 +00:00
.. code-block :: python
Trainer(accelerator="gpu", devices=8, strategy="ddp")
2024-02-27 03:29:26 +00:00
Then simply launch your script with the :doc: `torchrun <../clouds/cluster_intermediate_2>` command.
2022-04-19 18:15:47 +00:00
2024-02-27 03:29:26 +00:00
----
2022-04-19 18:15:47 +00:00
Optimize multi-machine communication
------------------------------------
By default, Lightning will select the `` nccl `` backend over `` gloo `` when running on GPUs.
Find more information about PyTorch's supported backends `here <https://pytorch.org/docs/stable/distributed.html> `__ .
Lightning allows explicitly specifying the backend via the `process_group_backend` constructor argument on the relevant Strategy classes. By default, Lightning will select the appropriate process group backend based on the hardware used.
.. code-block :: python
2023-02-27 20:14:23 +00:00
from lightning.pytorch.strategies import DDPStrategy
2022-04-19 18:15:47 +00:00
# Explicitly specify the process group backend if you choose to
ddp = DDPStrategy(process_group_backend="nccl")
# Configure the strategy on the Trainer
trainer = Trainer(strategy=ddp, accelerator="gpu", devices=8)