lightning/pytorch_lightning/metrics/functional/confusion_matrix.py

98 lines
4.0 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
import torch
from pytorch_lightning.metrics.classification.helpers import _input_format_classification
from pytorch_lightning.utilities import rank_zero_warn
def _confusion_matrix_update(
preds: torch.Tensor, target: torch.Tensor, num_classes: int, threshold: float = 0.5
) -> torch.Tensor:
preds, target, mode = _input_format_classification(preds, target, threshold)
if mode not in ('binary', 'multi-label'):
preds = preds.argmax(dim=1)
target = target.argmax(dim=1)
unique_mapping = (target.view(-1) * num_classes + preds.view(-1)).to(torch.long)
bins = torch.bincount(unique_mapping, minlength=num_classes**2)
confmat = bins.reshape(num_classes, num_classes)
return confmat
def _confusion_matrix_compute(confmat: torch.Tensor, normalize: Optional[str] = None) -> torch.Tensor:
allowed_normalize = ('true', 'pred', 'all', None)
assert normalize in allowed_normalize, \
f"Argument average needs to one of the following: {allowed_normalize}"
confmat = confmat.float()
if normalize is not None:
if normalize == 'true':
cm = confmat / confmat.sum(axis=1, keepdim=True)
elif normalize == 'pred':
cm = confmat / confmat.sum(axis=0, keepdim=True)
elif normalize == 'all':
cm = confmat / confmat.sum()
nan_elements = cm[torch.isnan(cm)].nelement()
if nan_elements != 0:
cm[torch.isnan(cm)] = 0
rank_zero_warn(f'{nan_elements} nan values found in confusion matrix have been replaced with zeros.')
return cm
return confmat
def confusion_matrix(
preds: torch.Tensor,
target: torch.Tensor,
num_classes: int,
normalize: Optional[str] = None,
threshold: float = 0.5
) -> torch.Tensor:
"""
Computes the confusion matrix. Works with binary, multiclass, and multilabel data.
Accepts logits from a model output or integer class values in prediction.
Works with multi-dimensional preds and target.
If preds and target are the same shape and preds is a float tensor, we use the ``self.threshold`` argument.
This is the case for binary and multi-label logits.
If preds has an extra dimension as in the case of multi-class scores we perform an argmax on ``dim=1``.
Args:
preds: (float or long tensor), Either a ``(N, ...)`` tensor with labels or
``(N, C, ...)`` where C is the number of classes, tensor with logits/probabilities
target: ``target`` (long tensor), tensor with shape ``(N, ...)`` with ground true labels
num_classes: Number of classes in the dataset.
normalize: Normalization mode for confusion matrix. Choose from
- ``None``: no normalization (default)
- ``'true'``: normalization over the targets (most commonly used)
- ``'pred'``: normalization over the predictions
- ``'all'``: normalization over the whole matrix
threshold:
Threshold value for binary or multi-label logits. default: 0.5
Example:
>>> from pytorch_lightning.metrics.functional import confusion_matrix
>>> target = torch.tensor([1, 1, 0, 0])
>>> preds = torch.tensor([0, 1, 0, 0])
>>> confusion_matrix(preds, target, num_classes=2)
tensor([[2., 0.],
[1., 1.]])
"""
confmat = _confusion_matrix_update(preds, target, num_classes, threshold)
return _confusion_matrix_compute(confmat, normalize)