2021-04-27 20:23:55 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
r"""
|
|
|
|
BasePredictionWriter
|
|
|
|
====================
|
|
|
|
|
|
|
|
Aids in saving predictions
|
|
|
|
"""
|
|
|
|
from typing import Any, Optional, Sequence
|
|
|
|
|
|
|
|
import pytorch_lightning as pl
|
|
|
|
from pytorch_lightning.callbacks.base import Callback
|
|
|
|
from pytorch_lightning.utilities import LightningEnum
|
|
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
|
|
|
|
|
|
|
|
|
|
class WriteInterval(LightningEnum):
|
|
|
|
BATCH = "batch"
|
|
|
|
EPOCH = "epoch"
|
|
|
|
BATCH_AND_EPOCH = "batch_and_epoch"
|
|
|
|
|
|
|
|
@property
|
|
|
|
def on_batch(self) -> bool:
|
|
|
|
return self in (self.BATCH, self.BATCH_AND_EPOCH)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def on_epoch(self) -> bool:
|
|
|
|
return self in (self.EPOCH, self.BATCH_AND_EPOCH)
|
|
|
|
|
|
|
|
|
|
|
|
class BasePredictionWriter(Callback):
|
|
|
|
"""
|
|
|
|
Base class to implement how the predictions should be stored.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
write_interval: When to write.
|
|
|
|
|
|
|
|
Example::
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from pytorch_lightning.callbacks import BasePredictionWriter
|
|
|
|
|
|
|
|
class CustomWriter(BasePredictionWriter):
|
|
|
|
|
|
|
|
def __init__(self, output_dir: str, write_interval: str):
|
|
|
|
super().__init__(write_interval)
|
|
|
|
self.output_dir
|
|
|
|
|
|
|
|
def write_on_batch_end(
|
|
|
|
self, trainer, pl_module: 'LightningModule', prediction: Any, batch_indices: List[int], batch: Any,
|
|
|
|
batch_idx: int, dataloader_idx: int
|
|
|
|
):
|
|
|
|
torch.save(prediction, os.path.join(self.output_dir, dataloader_idx, f"{batch_idx}.pt"))
|
|
|
|
|
|
|
|
def write_on_epoch_end(
|
|
|
|
self, trainer, pl_module: 'LightningModule', predictions: List[Any], batch_indices: List[Any]
|
|
|
|
):
|
|
|
|
torch.save(predictions, os.path.join(self.output_dir, "predictions.pt"))
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, write_interval: str = "batch") -> None:
|
|
|
|
if write_interval not in list(WriteInterval):
|
|
|
|
raise MisconfigurationException(f"`write_interval` should be one of {[i.value for i in WriteInterval]}.")
|
|
|
|
self.interval = WriteInterval(write_interval)
|
|
|
|
|
|
|
|
def write_on_batch_end(
|
|
|
|
self,
|
2021-07-26 11:37:35 +00:00
|
|
|
trainer: "pl.Trainer",
|
|
|
|
pl_module: "pl.LightningModule",
|
2021-04-27 20:23:55 +00:00
|
|
|
prediction: Any,
|
|
|
|
batch_indices: Optional[Sequence[int]],
|
|
|
|
batch: Any,
|
|
|
|
batch_idx: int,
|
|
|
|
dataloader_idx: int,
|
|
|
|
) -> None:
|
|
|
|
"""Override with the logic to write a single batch."""
|
|
|
|
raise NotImplementedError()
|
|
|
|
|
|
|
|
def write_on_epoch_end(
|
|
|
|
self,
|
2021-07-26 11:37:35 +00:00
|
|
|
trainer: "pl.Trainer",
|
|
|
|
pl_module: "pl.LightningModule",
|
2021-04-27 20:23:55 +00:00
|
|
|
predictions: Sequence[Any],
|
|
|
|
batch_indices: Optional[Sequence[Any]],
|
|
|
|
) -> None:
|
|
|
|
"""Override with the logic to write all batches."""
|
|
|
|
raise NotImplementedError()
|
|
|
|
|
|
|
|
def on_predict_batch_end(
|
|
|
|
self,
|
2021-07-26 11:37:35 +00:00
|
|
|
trainer: "pl.Trainer",
|
|
|
|
pl_module: "pl.LightningModule",
|
2021-04-27 20:23:55 +00:00
|
|
|
outputs: Any,
|
|
|
|
batch: Any,
|
|
|
|
batch_idx: int,
|
|
|
|
dataloader_idx: int,
|
|
|
|
) -> None:
|
|
|
|
if not self.interval.on_batch:
|
|
|
|
return
|
|
|
|
is_distributed = trainer.accelerator_connector.is_distributed
|
Loop Refactor 5/N - Prediction Loop (#7700)
* integrate d180bb2
* Minor changes
* Refactor loop logic into logger connector
* Refactor test
* Tighter fx validator
* Add back split idx
* Typing
* update
* Conflict
* Fix tests
* resolve grad_norm
* update
* move to train loop
* Bye grad_norm_dict parameter
* Fix sync test
* update
* Fix bug when validation is run mid epoch
* fix grad_norm_dict test
* Fix fx_validator test
* fix grad_norm_dict test
* Fix order bug
* Detach tensors in test
* resolve some tests
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* remove pdb
* resolve flake8
* Update test
* more tests
* Revert last thomas' changes
* resolve 1 test
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Refactor context restoration
* integrate latest changes from logger connector refactor poc
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* integrate latest changes from logger connector refactor poc
* Minor changes
* update changelog
* Remove unused argument
* Update CHANGELOG
* Copy call_hook changes
* Docs
* Fix ref
* move to cpu
* Bad merge
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* remove pdb
* remove pdb
* Refactor to
* Avoid partial
* trigger ci
* Bad merge
* integrate latest logger connector changes
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* remove grad norm dicts list
* Diff
* properties first
* Bad merge
* Reuse metrics_to_scalars
* Use active loop
* Move to device
* resolve test
* integrate latest changes from logger connector poc
* define union
* define union
* Update logger connector
* Update result
* Update imports
* Update after rename
* Refactor reduce_fx and op
* Fix test after rename
* mypy
* integrate latest logger connector refactor poc changes
* Fix test
* Refactor test
* Deprecate `self.log(sync_dist_op)` in favor of `self.log(reduce_fx)`
* Undo field
* add redundant return
* rename
rename files and classes
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* rename
* Replace code
* Fix names and imports
* Remove metric_attribute
* imports
* loop hygiene
* yapf on loops
* protected new loop trigger
* rename NEW LOOP guard
* integrate latest logger connector changes
* integrate latest logger connector changes (eval loop)
* resolve todo dataloading reset
* re-add notebooks
* add missing init
* bad merge
* remove NEW_LOOP guard
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* flake8
* exclude coverage
coverage
* integrate #7917, remove teardown from training loop
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* update "accumulated_batches_reached" condition
based on if iter count was updated or not
* remove public loop properties
* make skip backward protected again
* typing base loop
* typing fit loop
* typing training_batch_loop
* typing evaluation loop
* typing prediction loop
* typing training epoch loop
* dataloader_loop
* evaluation_dataloader_loop
* prediction_dataloader_loop
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* integrate train loop changes from master
* integrate eval loop changes from master
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix tpipes moving model to cpu and leaving it there.
* don't reset fit loop
don't reset fit loop
* fix test iteration count <-> batch_idx reset
* replace torch.Tensor -> Tensor
* fix attribute error to block_ddp_sync_behaviour
* fix flake8 and yapf conflict
* remove redundant override
* add classes
Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de>
Co-authored-by: Justus Schock <justus.schock@posteo.de>
Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com>
* trainer changes
* connect
* clean up
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* update test renaming
* rename evaluation loop to evaluation epoch loop
* minor docstring improvements
* update chlog
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* try ci fix
* update code owners for pl/loops
* update mock path
* re-order
* simplify dataloader reset
* simplify get_dataloaders()
* save predictions on_run_end()
* improve skip condition re-routing
* re-order
* remove unused type import
* check which assert is failing
* pig
* hobbit
* teardown for evaluation
* Revert "hobbit"
This reverts commit e81b0dbee31da813ba6ad58f74d236863c86d18e.
* Revert "pig"
This reverts commit 33d89e0720ce7380af80917b15a79362d9416ae7.
* Revert "check which assert is failing"
This reverts commit b7483b425cab95290eb2cbf354ccb0a77004df83.
* free memory in fit loop teardown
* update docstring
* period
* remove dead code
* else carlos
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* Update pytorch_lightning/loops/dataloader/evaluation_dataloader_loop.py
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* update chlog
* unused imp
* move default construction in run_evaluation
* add something for lawyer to read
* switch typehint for eval loop trainer property
* add missing imports
* remove a todo that needs more discussion
* combine _get_num_dataloaders with the property
* Update pytorch_lightning/loops/dataloader/dataloader_loop.py
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* black + yapf
* avoid coverage on old unused eval loop
* empty space in docstring
Co-authored-by: Ethan Harris <ewah1g13@soton.ac.uk>
* resolve todo for args forwarding
* weekproxy trainer
* fix check for num dataloaders kwargs
* clean up num prediction dataloaders property
* free memory
* rm notebooks folder
* rm old file
* revert changes to old eval loop
* bad merge
* undo teardown
* setup signature
* remove file for notes
* free memory
* chlog
* Revert "weekproxy trainer"
This reverts commit d4e6969170b80db4c9e6111fa9af507c740cde4a.
* connect trainer
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* clean up max batches and dataloaders
* max batches handling
* no grad handling
* unused argument
* protected attrs
* unused imports
* undo unintentional rename
* consistent naming
* capitalization in docstring
* list all args
* Update pytorch_lightning/loops/prediction_epoch_loop.py
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* Update pytorch_lightning/loops/prediction_epoch_loop.py
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* Update pytorch_lightning/loops/dataloader/prediction_dataloader_loop.py
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* Update pytorch_lightning/loops/dataloader/prediction_dataloader_loop.py
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* Update pytorch_lightning/loops/prediction_epoch_loop.py
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
Co-authored-by: Carlos Mocholi <carlossmocholi@gmail.com>
Co-authored-by: tchaton <thomas@grid.ai>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Justus Schock <justus.schock@posteo.de>
Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de>
Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com>
Co-authored-by: Ethan Harris <ewah1g13@soton.ac.uk>
2021-06-23 09:17:04 +00:00
|
|
|
batch_indices = trainer.predict_loop.epoch_loop.current_batch_indices if is_distributed else None
|
2021-04-27 20:23:55 +00:00
|
|
|
self.write_on_batch_end(trainer, pl_module, outputs, batch_indices, batch, batch_idx, dataloader_idx)
|
|
|
|
|
|
|
|
def on_predict_epoch_end(
|
2021-07-26 11:37:35 +00:00
|
|
|
self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", outputs: Sequence[Any]
|
2021-04-27 20:23:55 +00:00
|
|
|
) -> None:
|
|
|
|
if not self.interval.on_epoch:
|
|
|
|
return
|
|
|
|
is_distributed = trainer.accelerator_connector.is_distributed
|
|
|
|
epoch_batch_indices = trainer.predict_loop.epoch_batch_indices if is_distributed else None
|
|
|
|
self.write_on_epoch_end(trainer, pl_module, trainer.predict_loop.predictions, epoch_batch_indices)
|