2020-12-17 11:03:45 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import os
|
|
|
|
|
|
|
|
import matplotlib.pylab as plt
|
|
|
|
import pandas as pd
|
|
|
|
|
2020-12-23 19:38:57 +00:00
|
|
|
from benchmarks.test_basic_parity import measure_loops
|
2021-02-09 10:10:52 +00:00
|
|
|
from tests.helpers.advanced_models import ParityModuleMNIST, ParityModuleRNN
|
2020-12-17 11:03:45 +00:00
|
|
|
|
|
|
|
NUM_EPOCHS = 20
|
|
|
|
NUM_RUNS = 50
|
|
|
|
MODEL_CLASSES = (ParityModuleRNN, ParityModuleMNIST)
|
|
|
|
PATH_HERE = os.path.dirname(__file__)
|
|
|
|
FIGURE_EXTENSION = '.png'
|
|
|
|
|
|
|
|
|
|
|
|
def _main():
|
|
|
|
fig, axarr = plt.subplots(nrows=len(MODEL_CLASSES))
|
|
|
|
|
|
|
|
for i, cls_model in enumerate(MODEL_CLASSES):
|
|
|
|
path_csv = os.path.join(PATH_HERE, f'dump-times_{cls_model.__name__}.csv')
|
|
|
|
if os.path.isfile(path_csv):
|
|
|
|
df_time = pd.read_csv(path_csv, index_col=0)
|
|
|
|
else:
|
2020-12-23 19:38:57 +00:00
|
|
|
# todo: kind="Vanilla PT" -> use_lightning=False
|
|
|
|
vanilla = measure_loops(cls_model, kind="Vanilla PT", num_epochs=NUM_EPOCHS, num_runs=NUM_RUNS)
|
|
|
|
lightning = measure_loops(cls_model, kind="PT Lightning", num_epochs=NUM_EPOCHS, num_runs=NUM_RUNS)
|
2020-12-17 11:03:45 +00:00
|
|
|
|
|
|
|
df_time = pd.DataFrame({'vanilla PT': vanilla['durations'][1:], 'PT Lightning': lightning['durations'][1:]})
|
|
|
|
df_time /= NUM_RUNS
|
|
|
|
df_time.to_csv(os.path.join(PATH_HERE, f'dump-times_{cls_model.__name__}.csv'))
|
|
|
|
# todo: add also relative X-axis ticks to see both: relative and absolute time differences
|
|
|
|
df_time.plot.hist(
|
|
|
|
ax=axarr[i],
|
|
|
|
bins=20,
|
|
|
|
alpha=0.5,
|
|
|
|
title=cls_model.__name__,
|
|
|
|
legend=True,
|
|
|
|
grid=True,
|
|
|
|
)
|
|
|
|
axarr[i].set(xlabel='time [seconds]')
|
|
|
|
|
|
|
|
path_fig = os.path.join(PATH_HERE, f'figure-parity-times{FIGURE_EXTENSION}')
|
|
|
|
fig.tight_layout()
|
|
|
|
fig.savefig(path_fig)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
_main()
|