lightning/pytorch_lightning/trainer/training_loop.py

1007 lines
42 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import contextmanager, suppress
from copy import copy, deepcopy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
2021-01-23 23:52:04 +00:00
from pytorch_lightning.core.optimizer import LightningOptimizer
from pytorch_lightning.core.step_result import Result
PoC: Accelerator refactor (#5743) * restoring the result from subprocess * fix queue.get() order for results * add missing "block_backward_sync" context manager * add missing "block_backward_sync" context manager * fix sync_batchnorm * fix supported gpu-ids for tuple * fix clip gradients and inf recursion * accelerator selection: added cluster_environment plugin * fix torchelastic test * fix reduce early stopping decision for DDP * fix tests: callbacks, conversion to lightning optimizer * fix lightning optimizer does not pickle * fix setting benchmark and deterministic option * fix slurm amp test * fix prepare_data test and determine node_rank * fix retrieving last path when testing * remove obsolete plugin argument * fix test: test_trainer_config * fix torchscript tests * fix trainer.model access * move properties * fix test_transfer_batch_hook * fix auto_select_gpus * fix omegaconf test * fix test that needs to simulate slurm ddp * add horovod plugin * fix test with named arguments * clean up whitespace * fix datamodules test * remove old accelerators * fix naming * move old plugins * move to plugins * create precision subpackage * create training_type subpackage * fix all new import errors * fix wrong arguments order passed to test * fix LR finder * Added sharded training type and amp plugin * Move clip grad to precision plugin * Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically * Fix import issue, attempting to fix tests * Fix initial test * Reflect hook logic from master, should wrap model after move to device * Optional state consolidation, since master has optimizers not wrapped * change attribute for instance test * reset optimizers optimizers are not used in main process, so state would be wrong. * legacy * imports in accel * legacy2 * trainer imports * fix import errors after rebase * move hook to new setup location * provide unwrapping logic * fix trainer callback system * added ddp2 implementation * fix imports .legacy * move plugins * restore legacy * drop test.py from root * add tpu accelerator and plugins * fixes * fix lightning optimizer merge * reset bugreportmodel * unwrapping * step routing forward * model access * unwrap * opt * integrate distrib_type * sync changes * sync * fixes * add forgotten generators * add missing logic * update * import * missed imports * import fixes * isort * mv f * changelog * format * move helper to parallel plugin * d * add world size * clean up * duplicate * activate ddp_sharded and tpu * set nvidia flags * remove unused colab var * use_tpu <-> on_tpu attrs * make some ddp_cpu and clusterplugin tests pass * Ref/accelerator connector (#5742) * final cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * connector cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * trainer cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * accelerator cleanup + missing logic in accelerator connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add missing changes to callbacks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * reflect accelerator changes to lightning module Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * clean cluster envs Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * cleanup plugins Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add broadcasting Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * yapf * remove plugin connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * plugins * manual optimization * update optimizer routing * add rank to torchelastic * fix memory mixed precision * setstate on trainer for pickling in ddp spawn * add predict method * add back commented accelerator code * adapt test for sync_batch_norm to new plugin * fix deprecated tests * fix ddp cpu choice when no num_processes are given * yapf format * skip a memory test that cannot pass anymore * fix pickle error in spawn plugin * x * avoid * x * fix cyclic import in docs build * add support for sharded * update typing * add sharded and sharded_spawn to distributed types * make unwrap model default * refactor LightningShardedDataParallel similar to LightningDistributedDataParallel * update sharded spawn to reflect changes * update sharded to reflect changes * Merge 1.1.5 changes * fix merge * fix merge * yapf isort * fix merge * yapf isort * fix indentation in test * copy over reinit scheduler implementation from dev1.2 * fix apex tracking calls with dev_debugger * reduce diff to dev1.2, clean up * fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu * sort plugin tests legacy/new * fix error handling for amp on cpu * fix merge fix merge fix merge * [Feat] Resolve manual_backward (#5837) * resolve manual_backward * resolve flake8 * update * resolve for ddp_spawn * resolve flake8 * resolve flake8 * resolve flake8 Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * fix tests/accelerator tests on cpu * [BugFix] Resolve manual optimization (#5852) * resolve manual_optimization * update * update Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856) * resovle a bug * Accelerator refactor sharded rpc (#5854) * rpc branch * merge * update handling of rpc * make devices etc. Optional in RPC * set devices etc. later if necessary * remove devices from sequential * make devices optional in rpc * fix import * uncomment everything * fix cluster selection Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * resolve bug * fix assert in rpc test * resolve a test * fix docs compilation * accelerator refactor - fix for sharded parity test (#5866) * fix memory issue with ddp_spawn * x x x x x x x x x * x * Remove DDP2 as this does not apply * Add missing pre optimizer hook to ensure lambda closure is called * fix apex docstring * [accelerator][BugFix] Resolve some test for 1 gpu (#5863) * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * update * resolve flake8 * update * update * update * update * update * all_gather * update * make plugins work, add misconfig for RPC * update * update * remove breaking test * resolve some tests * resolve flake8 * revert to ddp_spawn Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de> * yapf isort * resolve flake8 * fix apex doctests * fix apex doctests 2 * resolve docs * update drone * clean env * update * update * update * update * merge * Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881) * Fix RPC related tests, clean out old API, update for new accelerator API * Move tests out of legacy folder, update paths and names * Update test_remove_1-4.py * Expose properties for tpu cores/gpus/num_gpus * Add root GPU property * Move properties to properties.py * move tests that were previously in drone * Fix root GPU property (#5908) * Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator * Add missing tests back * fix best model path transfer when no checkpoint callback available * Fix setup hook order [wip] (#5858) * Call trainer setup hook before accelerator setup * Add test case * add new test * typo * fix callback order in test Co-authored-by: tchaton <thomas@grid.ai> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * rename ddp sequential -> rpc sequential for special test * revert * fix stupid merge problem * Use property in connector for sampler (#5913) * merge the import conflicts * fix spawning of processes in slurm * [wip] Fix some bugs for TPU [skip ci] (#5878) * fixed for single tpu * fixed spawn * fixed spawn * update * update * wip * resolve bugs * resolve bug * update on comment * removed decorator * resolve comments * set to 4 * update * update * need cleaning * update * update * update * resolve flake8 * resolve bugs * exclude broadcast * resolve bugs * change test * update * update * skip if meet fails * properly raise trace * update * add catch * wrap test * resolve typo * update * typo Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> * resolve some tests * update * fix imports * update * resolve flake8 * update azure pipeline * skip a sharded test on cpu that requires a gpu * resolve tpus * resolve bug * resolve flake8 * update * updat utils * revert permission change on files * suggestions from carlos Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting changes * remove incomplete comment * Update pytorch_lightning/accelerators/__init__.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting change * add types * warn 1.7 ddp manual backward only if ddp kwarg unset * yapf + isort * pep8 unused imports * fix cyclic import in docs * Apply suggestions from code review * typer in accelerator.py * typo * Apply suggestions from code review * formatting * update on comments * update typo * Update pytorch_lightning/trainer/properties.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * update * suggestion from code review * suggestion from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: SeanNaren <sean@grid.ai> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
from pytorch_lightning.plugins import ParallelPlugin
from pytorch_lightning.trainer.supporters import TensorRunningAccum
from pytorch_lightning.utilities import _TPU_AVAILABLE, AMPType, DeviceType
from pytorch_lightning.utilities.distributed import rank_zero_info
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.finite_checks import detect_nan_parameters
from pytorch_lightning.utilities.grads import grad_norm
from pytorch_lightning.utilities.model_helpers import is_overridden
from pytorch_lightning.utilities.parsing import AttributeDict
from pytorch_lightning.utilities.signature_utils import is_param_in_hook_signature
from pytorch_lightning.utilities.warnings import WarningCache
2020-09-11 01:58:47 +00:00
class TrainLoop:
def __init__(
self,
trainer,
multiple_trainloader_mode: str,
max_epochs: Optional[int],
min_epochs: Optional[int],
max_steps: Optional[int],
min_steps: Optional[int],
num_sanity_val_steps: int,
):
self.trainer = trainer
self.accumulated_loss = None
self.warning_cache = WarningCache()
self._teardown_already_run = False
self.running_loss = TensorRunningAccum(window_length=20)
self._curr_step_result = None
self._cur_grad_norm_dict = None
Add Support for multiple train loaders (#1959) * add support for wrong dtype in apply_func * apply loader resetting to possible collection of loaders * add combined loader iter class * integrate combined loader iter to training loop * fix imports * fix imports * finish supporters * add tests for supporters * add test for model with multiple loaders * fix trainer integration * fix instance check * Train loaders (#4032) * patch for issues discussed in #1959, encapsulating underlying datastructures returned from train_dataloader * update data_loading.py to it uses patch discussed in #1959 * rename class * Separate CombinedLoaderIterator into two classes, and update related tests. (#4606) * Fix the bugs after rebasing. * Add custom get_len for apply_to_collection * Refactor MultiIterator to be as CombinedLoaderIterator * To get the right num_training_batches. Call the wrapper for multi trainloader in data_loading.py, instead of training_loop.py * Reload _loader_iters when calling __iter__ * Don't transform DataLoader to CombinedLoaderIterator when it's along * Updates test_fit_multiple_train_loaders for testing num_training_batches * Seperate CombinedLoaderIterator into CombinedLoaderIterator and CombinedDataLoader. Add CombinedDataset for unified DataLoader format. * Initialize CombinedDataLoader before calculating num_training_batches. Also updating self._worker_check for multiple loaders * Update tests for supporters * Update tests for multiple trainloaders. Add tests about few_workers for multiple loaders. * Fix pep8 issues * Add tests for train_loader_patch.py * Add descriptions to multiple_trainloader_mode * Remove unused variables * Add docstrings and typing * Add more tests for better converage * Remove unused commented codes * Add sampler property * Remove extract_dataset * Update typing * pep8 * Update train_loader_patch.py * Apply suggestions from code review Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/supporters.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * reviewer comments * fix stupid import * add docs * add back line separator * fix line sep * pep8 * Apply suggestions from code review * fix * fix * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * flake8 Co-authored-by: Justus Schock <justusschock@justuss-mbp.fritz.box> Co-authored-by: Christofer Fransson <christofer_fransson@yahoo.com> Co-authored-by: YI-LIN SUNG <r06942076@ntu.edu.tw> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz>
2021-01-04 19:57:53 +00:00
self._multiple_trainloader_mode = multiple_trainloader_mode
self._skip_backward = False
Add Support for multiple train loaders (#1959) * add support for wrong dtype in apply_func * apply loader resetting to possible collection of loaders * add combined loader iter class * integrate combined loader iter to training loop * fix imports * fix imports * finish supporters * add tests for supporters * add test for model with multiple loaders * fix trainer integration * fix instance check * Train loaders (#4032) * patch for issues discussed in #1959, encapsulating underlying datastructures returned from train_dataloader * update data_loading.py to it uses patch discussed in #1959 * rename class * Separate CombinedLoaderIterator into two classes, and update related tests. (#4606) * Fix the bugs after rebasing. * Add custom get_len for apply_to_collection * Refactor MultiIterator to be as CombinedLoaderIterator * To get the right num_training_batches. Call the wrapper for multi trainloader in data_loading.py, instead of training_loop.py * Reload _loader_iters when calling __iter__ * Don't transform DataLoader to CombinedLoaderIterator when it's along * Updates test_fit_multiple_train_loaders for testing num_training_batches * Seperate CombinedLoaderIterator into CombinedLoaderIterator and CombinedDataLoader. Add CombinedDataset for unified DataLoader format. * Initialize CombinedDataLoader before calculating num_training_batches. Also updating self._worker_check for multiple loaders * Update tests for supporters * Update tests for multiple trainloaders. Add tests about few_workers for multiple loaders. * Fix pep8 issues * Add tests for train_loader_patch.py * Add descriptions to multiple_trainloader_mode * Remove unused variables * Add docstrings and typing * Add more tests for better converage * Remove unused commented codes * Add sampler property * Remove extract_dataset * Update typing * pep8 * Update train_loader_patch.py * Apply suggestions from code review Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/supporters.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * reviewer comments * fix stupid import * add docs * add back line separator * fix line sep * pep8 * Apply suggestions from code review * fix * fix * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * flake8 Co-authored-by: Justus Schock <justusschock@justuss-mbp.fritz.box> Co-authored-by: Christofer Fransson <christofer_fransson@yahoo.com> Co-authored-by: YI-LIN SUNG <r06942076@ntu.edu.tw> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz>
2021-01-04 19:57:53 +00:00
self.trainer._multiple_trainloader_mode = multiple_trainloader_mode
self._optimizer_freq_cumsum = None
self.global_step = 0
self.current_epoch = 0
self.trainer.should_stop = False
self.total_batch_idx = 0
self.batch_idx = 0
self.trainer.num_training_batches = 0
self.trainer.train_dataloader = None
# If neither max_epochs or max_steps is set, then use existing default of max_epochs = 1000
self.max_epochs = 1000 if (max_epochs is None and max_steps is None) else max_epochs
# If neither min_epochs or min_steps is set, then use existing default of min_epochs = 1
self.min_epochs = 1 if (min_epochs is None and min_steps is None) else min_epochs
self.max_steps = max_steps
self.min_steps = min_steps
if num_sanity_val_steps == -1:
self.trainer.num_sanity_val_steps = float("inf")
else:
self.trainer.num_sanity_val_steps = num_sanity_val_steps
@property
def num_optimizers(self):
num_optimizers = len(self.get_optimizers_iterable())
return num_optimizers
@property
def optimizer_freq_cumsum(self):
if self._optimizer_freq_cumsum is None:
self._optimizer_freq_cumsum = np.cumsum(self.trainer.optimizer_frequencies)
return self._optimizer_freq_cumsum
def should_skip_training(self) -> bool:
should_by_max_steps = self.max_steps is not None and self.global_step >= self.max_steps
should_by_epoch = self.max_epochs is not None and self.current_epoch >= self.max_epochs
return should_by_max_steps or should_by_epoch or self.trainer.num_training_batches == 0
def on_train_start(self):
# hook
self.trainer.call_hook("on_train_start")
def on_train_end(self):
if self._teardown_already_run:
return
self._teardown_already_run = True
# trigger checkpoint check. need to temporarily decrease the global step to avoid saving duplicates
# when a checkpoint was saved at the last step
self.global_step -= 1
self.check_checkpoint_callback(should_update=True, is_last=True)
self.global_step += 1
# hook
self.trainer.call_hook("on_train_end")
PoC: Accelerator refactor (#5743) * restoring the result from subprocess * fix queue.get() order for results * add missing "block_backward_sync" context manager * add missing "block_backward_sync" context manager * fix sync_batchnorm * fix supported gpu-ids for tuple * fix clip gradients and inf recursion * accelerator selection: added cluster_environment plugin * fix torchelastic test * fix reduce early stopping decision for DDP * fix tests: callbacks, conversion to lightning optimizer * fix lightning optimizer does not pickle * fix setting benchmark and deterministic option * fix slurm amp test * fix prepare_data test and determine node_rank * fix retrieving last path when testing * remove obsolete plugin argument * fix test: test_trainer_config * fix torchscript tests * fix trainer.model access * move properties * fix test_transfer_batch_hook * fix auto_select_gpus * fix omegaconf test * fix test that needs to simulate slurm ddp * add horovod plugin * fix test with named arguments * clean up whitespace * fix datamodules test * remove old accelerators * fix naming * move old plugins * move to plugins * create precision subpackage * create training_type subpackage * fix all new import errors * fix wrong arguments order passed to test * fix LR finder * Added sharded training type and amp plugin * Move clip grad to precision plugin * Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically * Fix import issue, attempting to fix tests * Fix initial test * Reflect hook logic from master, should wrap model after move to device * Optional state consolidation, since master has optimizers not wrapped * change attribute for instance test * reset optimizers optimizers are not used in main process, so state would be wrong. * legacy * imports in accel * legacy2 * trainer imports * fix import errors after rebase * move hook to new setup location * provide unwrapping logic * fix trainer callback system * added ddp2 implementation * fix imports .legacy * move plugins * restore legacy * drop test.py from root * add tpu accelerator and plugins * fixes * fix lightning optimizer merge * reset bugreportmodel * unwrapping * step routing forward * model access * unwrap * opt * integrate distrib_type * sync changes * sync * fixes * add forgotten generators * add missing logic * update * import * missed imports * import fixes * isort * mv f * changelog * format * move helper to parallel plugin * d * add world size * clean up * duplicate * activate ddp_sharded and tpu * set nvidia flags * remove unused colab var * use_tpu <-> on_tpu attrs * make some ddp_cpu and clusterplugin tests pass * Ref/accelerator connector (#5742) * final cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * connector cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * trainer cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * accelerator cleanup + missing logic in accelerator connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add missing changes to callbacks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * reflect accelerator changes to lightning module Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * clean cluster envs Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * cleanup plugins Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add broadcasting Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * yapf * remove plugin connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * plugins * manual optimization * update optimizer routing * add rank to torchelastic * fix memory mixed precision * setstate on trainer for pickling in ddp spawn * add predict method * add back commented accelerator code * adapt test for sync_batch_norm to new plugin * fix deprecated tests * fix ddp cpu choice when no num_processes are given * yapf format * skip a memory test that cannot pass anymore * fix pickle error in spawn plugin * x * avoid * x * fix cyclic import in docs build * add support for sharded * update typing * add sharded and sharded_spawn to distributed types * make unwrap model default * refactor LightningShardedDataParallel similar to LightningDistributedDataParallel * update sharded spawn to reflect changes * update sharded to reflect changes * Merge 1.1.5 changes * fix merge * fix merge * yapf isort * fix merge * yapf isort * fix indentation in test * copy over reinit scheduler implementation from dev1.2 * fix apex tracking calls with dev_debugger * reduce diff to dev1.2, clean up * fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu * sort plugin tests legacy/new * fix error handling for amp on cpu * fix merge fix merge fix merge * [Feat] Resolve manual_backward (#5837) * resolve manual_backward * resolve flake8 * update * resolve for ddp_spawn * resolve flake8 * resolve flake8 * resolve flake8 Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * fix tests/accelerator tests on cpu * [BugFix] Resolve manual optimization (#5852) * resolve manual_optimization * update * update Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856) * resovle a bug * Accelerator refactor sharded rpc (#5854) * rpc branch * merge * update handling of rpc * make devices etc. Optional in RPC * set devices etc. later if necessary * remove devices from sequential * make devices optional in rpc * fix import * uncomment everything * fix cluster selection Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * resolve bug * fix assert in rpc test * resolve a test * fix docs compilation * accelerator refactor - fix for sharded parity test (#5866) * fix memory issue with ddp_spawn * x x x x x x x x x * x * Remove DDP2 as this does not apply * Add missing pre optimizer hook to ensure lambda closure is called * fix apex docstring * [accelerator][BugFix] Resolve some test for 1 gpu (#5863) * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * update * resolve flake8 * update * update * update * update * update * all_gather * update * make plugins work, add misconfig for RPC * update * update * remove breaking test * resolve some tests * resolve flake8 * revert to ddp_spawn Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de> * yapf isort * resolve flake8 * fix apex doctests * fix apex doctests 2 * resolve docs * update drone * clean env * update * update * update * update * merge * Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881) * Fix RPC related tests, clean out old API, update for new accelerator API * Move tests out of legacy folder, update paths and names * Update test_remove_1-4.py * Expose properties for tpu cores/gpus/num_gpus * Add root GPU property * Move properties to properties.py * move tests that were previously in drone * Fix root GPU property (#5908) * Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator * Add missing tests back * fix best model path transfer when no checkpoint callback available * Fix setup hook order [wip] (#5858) * Call trainer setup hook before accelerator setup * Add test case * add new test * typo * fix callback order in test Co-authored-by: tchaton <thomas@grid.ai> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * rename ddp sequential -> rpc sequential for special test * revert * fix stupid merge problem * Use property in connector for sampler (#5913) * merge the import conflicts * fix spawning of processes in slurm * [wip] Fix some bugs for TPU [skip ci] (#5878) * fixed for single tpu * fixed spawn * fixed spawn * update * update * wip * resolve bugs * resolve bug * update on comment * removed decorator * resolve comments * set to 4 * update * update * need cleaning * update * update * update * resolve flake8 * resolve bugs * exclude broadcast * resolve bugs * change test * update * update * skip if meet fails * properly raise trace * update * add catch * wrap test * resolve typo * update * typo Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> * resolve some tests * update * fix imports * update * resolve flake8 * update azure pipeline * skip a sharded test on cpu that requires a gpu * resolve tpus * resolve bug * resolve flake8 * update * updat utils * revert permission change on files * suggestions from carlos Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting changes * remove incomplete comment * Update pytorch_lightning/accelerators/__init__.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting change * add types * warn 1.7 ddp manual backward only if ddp kwarg unset * yapf + isort * pep8 unused imports * fix cyclic import in docs * Apply suggestions from code review * typer in accelerator.py * typo * Apply suggestions from code review * formatting * update on comments * update typo * Update pytorch_lightning/trainer/properties.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * update * suggestion from code review * suggestion from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: SeanNaren <sean@grid.ai> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
# todo: TPU 8 cores hangs in flush with TensorBoard. Might do for all loggers.
# It might be related to xla tensors blocked when moving the cpu
# kill loggers
if self.trainer.logger is not None:
self.trainer.logger.finalize("success")
# summarize profile results
self.trainer.profiler.describe()
# give accelerators a chance to finish
self.trainer.accelerator.on_train_end()
# reset bookkeeping
self.trainer.state.stage = None
def check_checkpoint_callback(self, should_update, is_last=False):
# TODO bake this logic into the ModelCheckpoint callback
if should_update and self.trainer.checkpoint_connector.has_trained:
callbacks = self.trainer.checkpoint_callbacks
if is_last and any(cb.save_last and cb.verbose for cb in callbacks):
rank_zero_info("Saving latest checkpoint...")
model = self.trainer.lightning_module
for cb in callbacks:
cb.on_validation_end(self.trainer, model)
def on_train_epoch_start(self, epoch):
# update training progress in trainer
self.current_epoch = epoch
model = self.trainer.lightning_module
# reset train dataloader
if epoch != 0 and self.trainer.reload_dataloaders_every_epoch:
self.trainer.reset_train_dataloader(model)
# todo: specify the possible exception
with suppress(Exception):
# set seed for distributed sampler (enables shuffling for each epoch)
self.trainer.train_dataloader.sampler.set_epoch(epoch)
# changing gradient according accumulation_scheduler
self.trainer.accumulation_scheduler.on_train_epoch_start(self.trainer, self.trainer.lightning_module)
# stores accumulated grad fractions per batch
self.accumulated_loss = TensorRunningAccum(window_length=self.trainer.accumulate_grad_batches)
# hook
self.trainer.call_hook("on_epoch_start")
self.trainer.call_hook("on_train_epoch_start")
def on_train_batch_end(self, epoch_output, batch_end_outputs, batch, batch_idx, dataloader_idx):
batch_end_outputs = [opt_idx_out for opt_idx_out in batch_end_outputs if len(opt_idx_out)]
processed_batch_end_outputs = TrainLoop._prepare_outputs(batch_end_outputs, batch_mode=True)
[feat] Logging refactor 2/n - train (#4495) * update logging * solve more bugs * replace Mapping by Dict * update on comments * resolve pep8 * Apply suggestions from code review Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * typo * update for coverage * update test * update * Update tests/models/test_hooks.py Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> * Update tests/models/test_hooks.py Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> * update on comments * remove deepcopy * remove useless look for * another small optim * extra optim * remove lastest optim, can be source of bug * resolve bug * add docstring * optimize coverage * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging_tests/test_distributed_logging.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/evaluation_loop.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging/test_logger_connector.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging_tests/test_train_loop_logging_1_0.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * update * update on comments * update parity speed * get it down to 0.65 * update * 0.8 max_dif Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-11-05 22:27:04 +00:00
# hook
self.trainer.call_hook('on_train_batch_end', processed_batch_end_outputs, batch, batch_idx, dataloader_idx)
self.trainer.call_hook('on_batch_end')
[feat] Logging refactor 2/n - train (#4495) * update logging * solve more bugs * replace Mapping by Dict * update on comments * resolve pep8 * Apply suggestions from code review Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * typo * update for coverage * update test * update * Update tests/models/test_hooks.py Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> * Update tests/models/test_hooks.py Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> * update on comments * remove deepcopy * remove useless look for * another small optim * extra optim * remove lastest optim, can be source of bug * resolve bug * add docstring * optimize coverage * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging_tests/test_distributed_logging.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/evaluation_loop.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging/test_logger_connector.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging_tests/test_train_loop_logging_1_0.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * update * update on comments * update parity speed * get it down to 0.65 * update * 0.8 max_dif Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-11-05 22:27:04 +00:00
# figure out what to track for epoch end
self.track_epoch_end_reduce_metrics(epoch_output, batch_end_outputs)
[feat] Logging refactor 2/n - train (#4495) * update logging * solve more bugs * replace Mapping by Dict * update on comments * resolve pep8 * Apply suggestions from code review Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * typo * update for coverage * update test * update * Update tests/models/test_hooks.py Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> * Update tests/models/test_hooks.py Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> * update on comments * remove deepcopy * remove useless look for * another small optim * extra optim * remove lastest optim, can be source of bug * resolve bug * add docstring * optimize coverage * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging_tests/test_distributed_logging.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/evaluation_loop.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging/test_logger_connector.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging_tests/test_train_loop_logging_1_0.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * update * update on comments * update parity speed * get it down to 0.65 * update * 0.8 max_dif Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-11-05 22:27:04 +00:00
# reset batch logger internals
self.trainer.logger_connector.on_train_batch_end()
def reset_train_val_dataloaders(self, model) -> None:
"""
Resets train and val dataloaders if none are attached to the trainer.
The val dataloader must be initialized before training loop starts, as the training loop
inspects the val dataloader to determine whether to run the evaluation loop.
"""
if self.trainer.train_dataloader is None:
self.trainer.reset_train_dataloader(model)
if self.trainer.val_dataloaders is None:
self.trainer.reset_val_dataloader(model)
def track_epoch_end_reduce_metrics(self, epoch_output, batch_end_outputs):
hook_overridden = self._should_add_batch_output_to_epoch_output()
# track the outputs to reduce at the end of the epoch
for opt_idx, opt_outputs in enumerate(batch_end_outputs):
sample_output = opt_outputs[-1]
# decide if we need to reduce at the end of the epoch automatically
auto_reduce_tng_result = isinstance(sample_output, Result) and sample_output.should_reduce_on_epoch_end
# only track when a) it needs to be autoreduced OR b) the user wants to manually reduce on epoch end
2021-02-04 17:55:45 +00:00
if not (hook_overridden or auto_reduce_tng_result):
continue
# with 1 step (no tbptt) don't use a sequence at epoch end
if isinstance(opt_outputs, list) and len(opt_outputs) == 1 and not isinstance(opt_outputs[0], Result):
opt_outputs = opt_outputs[0]
epoch_output[opt_idx].append(opt_outputs)
def _should_add_batch_output_to_epoch_output(self) -> bool:
# We add to the epoch outputs if
# 1. The model defines training_epoch_end OR
# 2. The model overrides on_train_epoch_end which has `outputs` in the signature
# TODO: in v1.5 this only needs to check if training_epoch_end is overridden
lightning_module = self.trainer.lightning_module
if is_overridden("training_epoch_end", model=lightning_module):
return True
if is_overridden("on_train_epoch_end", model=lightning_module):
model_hook_fx = getattr(lightning_module, "on_train_epoch_end")
if is_param_in_hook_signature(model_hook_fx, "outputs"):
return True
return False
def get_optimizers_iterable(self, batch_idx=None):
"""
Generates an iterable with (idx, optimizer) for each optimizer.
"""
if not self.trainer.optimizer_frequencies:
# call training_step once per optimizer
return list(enumerate(self.trainer.optimizers))
if batch_idx is None:
batch_idx = self.total_batch_idx
optimizers_loop_length = self.optimizer_freq_cumsum[-1]
current_place_in_loop = batch_idx % optimizers_loop_length
# find optimzier index by looking for the first {item > current_place} in the cumsum list
opt_idx = np.argmax(self.optimizer_freq_cumsum > current_place_in_loop)
return [[opt_idx, self.trainer.optimizers[opt_idx]]]
def on_after_backward(self, training_step_output, batch_idx, untouched_loss):
training_step_output.detach()
# insert after step hook
self.trainer.call_hook("on_after_backward")
# when in dev debugging track the losses
self.trainer.dev_debugger.track_train_loss_history(batch_idx, untouched_loss.detach())
def _check_training_step_output(self, training_step_output):
if isinstance(training_step_output, torch.Tensor) and not self.trainer.lightning_module.automatic_optimization:
if training_step_output.grad_fn is None:
# TODO: Find why - RuntimeError: Expected to mark a variable ready only once ...
raise MisconfigurationException("In manual optimization, `training_step` should not return a Tensor")
def training_step(self, split_batch, batch_idx, opt_idx, hiddens):
# give the PL module a result for logging
model_ref = self.trainer.lightning_module
with self.trainer.profiler.profile("model_forward"):
args = self.build_train_args(split_batch, batch_idx, opt_idx, hiddens)
[feat] Logging refactor 2/n - train (#4495) * update logging * solve more bugs * replace Mapping by Dict * update on comments * resolve pep8 * Apply suggestions from code review Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * typo * update for coverage * update test * update * Update tests/models/test_hooks.py Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> * Update tests/models/test_hooks.py Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> * update on comments * remove deepcopy * remove useless look for * another small optim * extra optim * remove lastest optim, can be source of bug * resolve bug * add docstring * optimize coverage * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging_tests/test_distributed_logging.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/evaluation_loop.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging/test_logger_connector.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging_tests/test_train_loop_logging_1_0.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * update * update on comments * update parity speed * get it down to 0.65 * update * 0.8 max_dif Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-11-05 22:27:04 +00:00
# manually capture logged metrics
model_ref._current_fx_name = 'training_step'
2020-11-27 18:21:23 +00:00
model_ref._results = Result()
with self.trainer.profiler.profile("training_step"):
training_step_output = self.trainer.accelerator.training_step(args)
self.trainer.accelerator.post_training_step()
PoC: Accelerator refactor (#5743) * restoring the result from subprocess * fix queue.get() order for results * add missing "block_backward_sync" context manager * add missing "block_backward_sync" context manager * fix sync_batchnorm * fix supported gpu-ids for tuple * fix clip gradients and inf recursion * accelerator selection: added cluster_environment plugin * fix torchelastic test * fix reduce early stopping decision for DDP * fix tests: callbacks, conversion to lightning optimizer * fix lightning optimizer does not pickle * fix setting benchmark and deterministic option * fix slurm amp test * fix prepare_data test and determine node_rank * fix retrieving last path when testing * remove obsolete plugin argument * fix test: test_trainer_config * fix torchscript tests * fix trainer.model access * move properties * fix test_transfer_batch_hook * fix auto_select_gpus * fix omegaconf test * fix test that needs to simulate slurm ddp * add horovod plugin * fix test with named arguments * clean up whitespace * fix datamodules test * remove old accelerators * fix naming * move old plugins * move to plugins * create precision subpackage * create training_type subpackage * fix all new import errors * fix wrong arguments order passed to test * fix LR finder * Added sharded training type and amp plugin * Move clip grad to precision plugin * Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically * Fix import issue, attempting to fix tests * Fix initial test * Reflect hook logic from master, should wrap model after move to device * Optional state consolidation, since master has optimizers not wrapped * change attribute for instance test * reset optimizers optimizers are not used in main process, so state would be wrong. * legacy * imports in accel * legacy2 * trainer imports * fix import errors after rebase * move hook to new setup location * provide unwrapping logic * fix trainer callback system * added ddp2 implementation * fix imports .legacy * move plugins * restore legacy * drop test.py from root * add tpu accelerator and plugins * fixes * fix lightning optimizer merge * reset bugreportmodel * unwrapping * step routing forward * model access * unwrap * opt * integrate distrib_type * sync changes * sync * fixes * add forgotten generators * add missing logic * update * import * missed imports * import fixes * isort * mv f * changelog * format * move helper to parallel plugin * d * add world size * clean up * duplicate * activate ddp_sharded and tpu * set nvidia flags * remove unused colab var * use_tpu <-> on_tpu attrs * make some ddp_cpu and clusterplugin tests pass * Ref/accelerator connector (#5742) * final cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * connector cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * trainer cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * accelerator cleanup + missing logic in accelerator connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add missing changes to callbacks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * reflect accelerator changes to lightning module Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * clean cluster envs Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * cleanup plugins Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add broadcasting Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * yapf * remove plugin connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * plugins * manual optimization * update optimizer routing * add rank to torchelastic * fix memory mixed precision * setstate on trainer for pickling in ddp spawn * add predict method * add back commented accelerator code * adapt test for sync_batch_norm to new plugin * fix deprecated tests * fix ddp cpu choice when no num_processes are given * yapf format * skip a memory test that cannot pass anymore * fix pickle error in spawn plugin * x * avoid * x * fix cyclic import in docs build * add support for sharded * update typing * add sharded and sharded_spawn to distributed types * make unwrap model default * refactor LightningShardedDataParallel similar to LightningDistributedDataParallel * update sharded spawn to reflect changes * update sharded to reflect changes * Merge 1.1.5 changes * fix merge * fix merge * yapf isort * fix merge * yapf isort * fix indentation in test * copy over reinit scheduler implementation from dev1.2 * fix apex tracking calls with dev_debugger * reduce diff to dev1.2, clean up * fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu * sort plugin tests legacy/new * fix error handling for amp on cpu * fix merge fix merge fix merge * [Feat] Resolve manual_backward (#5837) * resolve manual_backward * resolve flake8 * update * resolve for ddp_spawn * resolve flake8 * resolve flake8 * resolve flake8 Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * fix tests/accelerator tests on cpu * [BugFix] Resolve manual optimization (#5852) * resolve manual_optimization * update * update Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856) * resovle a bug * Accelerator refactor sharded rpc (#5854) * rpc branch * merge * update handling of rpc * make devices etc. Optional in RPC * set devices etc. later if necessary * remove devices from sequential * make devices optional in rpc * fix import * uncomment everything * fix cluster selection Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * resolve bug * fix assert in rpc test * resolve a test * fix docs compilation * accelerator refactor - fix for sharded parity test (#5866) * fix memory issue with ddp_spawn * x x x x x x x x x * x * Remove DDP2 as this does not apply * Add missing pre optimizer hook to ensure lambda closure is called * fix apex docstring * [accelerator][BugFix] Resolve some test for 1 gpu (#5863) * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * update * resolve flake8 * update * update * update * update * update * all_gather * update * make plugins work, add misconfig for RPC * update * update * remove breaking test * resolve some tests * resolve flake8 * revert to ddp_spawn Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de> * yapf isort * resolve flake8 * fix apex doctests * fix apex doctests 2 * resolve docs * update drone * clean env * update * update * update * update * merge * Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881) * Fix RPC related tests, clean out old API, update for new accelerator API * Move tests out of legacy folder, update paths and names * Update test_remove_1-4.py * Expose properties for tpu cores/gpus/num_gpus * Add root GPU property * Move properties to properties.py * move tests that were previously in drone * Fix root GPU property (#5908) * Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator * Add missing tests back * fix best model path transfer when no checkpoint callback available * Fix setup hook order [wip] (#5858) * Call trainer setup hook before accelerator setup * Add test case * add new test * typo * fix callback order in test Co-authored-by: tchaton <thomas@grid.ai> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * rename ddp sequential -> rpc sequential for special test * revert * fix stupid merge problem * Use property in connector for sampler (#5913) * merge the import conflicts * fix spawning of processes in slurm * [wip] Fix some bugs for TPU [skip ci] (#5878) * fixed for single tpu * fixed spawn * fixed spawn * update * update * wip * resolve bugs * resolve bug * update on comment * removed decorator * resolve comments * set to 4 * update * update * need cleaning * update * update * update * resolve flake8 * resolve bugs * exclude broadcast * resolve bugs * change test * update * update * skip if meet fails * properly raise trace * update * add catch * wrap test * resolve typo * update * typo Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> * resolve some tests * update * fix imports * update * resolve flake8 * update azure pipeline * skip a sharded test on cpu that requires a gpu * resolve tpus * resolve bug * resolve flake8 * update * updat utils * revert permission change on files * suggestions from carlos Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting changes * remove incomplete comment * Update pytorch_lightning/accelerators/__init__.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting change * add types * warn 1.7 ddp manual backward only if ddp kwarg unset * yapf + isort * pep8 unused imports * fix cyclic import in docs * Apply suggestions from code review * typer in accelerator.py * typo * Apply suggestions from code review * formatting * update on comments * update typo * Update pytorch_lightning/trainer/properties.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * update * suggestion from code review * suggestion from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: SeanNaren <sean@grid.ai> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
[feat] Logging refactor 2/n - train (#4495) * update logging * solve more bugs * replace Mapping by Dict * update on comments * resolve pep8 * Apply suggestions from code review Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * typo * update for coverage * update test * update * Update tests/models/test_hooks.py Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> * Update tests/models/test_hooks.py Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> * update on comments * remove deepcopy * remove useless look for * another small optim * extra optim * remove lastest optim, can be source of bug * resolve bug * add docstring * optimize coverage * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging_tests/test_distributed_logging.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/evaluation_loop.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging/test_logger_connector.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging_tests/test_train_loop_logging_1_0.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * update * update on comments * update parity speed * get it down to 0.65 * update * 0.8 max_dif Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-11-05 22:27:04 +00:00
self.trainer.logger_connector.cache_logged_metrics()
self._check_training_step_output(training_step_output)
2020-11-27 18:21:23 +00:00
training_step_output = self.trainer.call_hook("training_step_end", training_step_output)
training_step_output_for_epoch_end, training_step_output = self._process_training_step_output(
training_step_output, split_batch
)
if training_step_output_for_epoch_end is None:
return
2020-10-12 14:06:17 +00:00
# enable empty loss when using manual opt
closure_loss = None
untouched_loss = None
if self.trainer.lightning_module.automatic_optimization:
# accumulate loss. if accumulate_grad_batches==1, no effect
closure_loss = training_step_output.minimize / self.trainer.accumulate_grad_batches
2020-10-12 14:06:17 +00:00
# the loss will get scaled for amp. avoid any modifications to it
untouched_loss = closure_loss.detach().clone()
# result
result = AttributeDict(
closure_loss=closure_loss,
loss=untouched_loss,
training_step_output=training_step_output,
training_step_output_for_epoch_end=training_step_output_for_epoch_end,
)
return result
def _process_training_step_output(self, training_step_output, split_batch):
training_step_output_for_epoch_end = training_step_output
# enable validation_step return None
if training_step_output_for_epoch_end is None:
return None, None
result = self.trainer.lightning_module._results
loss = None
hiddens = None
result["extra"] = {}
# handle dict return
if isinstance(training_step_output, dict):
loss = training_step_output.pop("loss", None)
hiddens = training_step_output.pop("hiddens", None)
if hiddens is not None:
hiddens = hiddens.detach()
result["extra"] = training_step_output
# handle scalar return
elif isinstance(training_step_output, torch.Tensor):
loss = training_step_output
# map to results under the hood
result.minimize = loss
self.trainer.hiddens = hiddens
# track batch for manual reduction with result
result.track_batch_size(len(split_batch))
# track metrics without grads for epoch reduction
training_step_output_for_epoch_end = copy(result)
training_step_output_for_epoch_end = training_step_output_for_epoch_end.detach()
if self.trainer.move_metrics_to_cpu:
training_step_output_for_epoch_end = training_step_output_for_epoch_end.cpu()
return training_step_output_for_epoch_end, result
@staticmethod
def _prepare_outputs(
outputs: List[List[List[Result]]],
batch_mode: bool,
) -> Union[List[List[List[Dict]]], List[List[Dict]], List[Dict], Dict]:
"""
Extract required information from batch or epoch end results.
Args:
outputs: A 3-dimensional list of ``Result`` objects with dimensions:
[optimizer outs][batch outs][tbptt steps].
batch_mode: If True, ignore the batch output dimension.
Returns:
The cleaned outputs with ``Result`` objects converted to dictionaries. All list dimensions of size one will
be collapsed.
"""
processed_outputs = []
for opt_outputs in outputs:
# handle an edge case where an optimizer output is the empty list
if len(opt_outputs) == 0:
continue
processed_batch_outputs = []
if batch_mode:
opt_outputs = [opt_outputs]
for batch_outputs in opt_outputs:
processed_tbptt_outputs = []
for tbptt_output in batch_outputs:
out = tbptt_output.extra
out['loss'] = tbptt_output.minimize
processed_tbptt_outputs.append(out)
# if there was only one tbptt step then we can collapse that dimension
if len(processed_tbptt_outputs) == 1:
processed_tbptt_outputs = processed_tbptt_outputs[0]
processed_batch_outputs.append(processed_tbptt_outputs)
# batch_outputs should be just one dict (or a list of dicts if using tbptt) per optimizer
if batch_mode:
processed_batch_outputs = processed_batch_outputs[0]
processed_outputs.append(processed_batch_outputs)
# if there is only one optimiser then we collapse that dimension
if len(processed_outputs) == 1:
processed_outputs = processed_outputs[0]
return processed_outputs
def optimizer_step(self, optimizer, opt_idx, batch_idx, train_step_and_backward_closure):
model_ref = self.trainer.lightning_module
is_lbfgs = isinstance(optimizer, torch.optim.LBFGS)
using_native_amp = self.trainer.amp_backend == AMPType.NATIVE
# native amp + lbfgs is a no go right now
if using_native_amp and is_lbfgs:
raise MisconfigurationException(
'native PyTorch amp and lbfgs are not compatible.'
' To request, please file a Github issue in PyTorch and tag @mcarilli'
)
2021-02-01 19:11:18 +00:00
# wraps into LightningOptimizer only for running step
deprecate enable_pl_optimizer as it is not restored properly (#5244) * update * clean test * still in progress * udpdate test * update * update * resolve flake * add test for zero_grad * update * works without accumulated_grad * update * update * resolve amp * revert back to True * update * clean tests * cleaned out * typo * update test * git repare bug * remove print * udpate * Fix formatting/optimizer imports * Refactor the test for cleanliness * Add vanilla model to the test, better var names * Fixed var names, let's clean up these mock tests * repare test * update test * resolve flake8 * add manual_optimization * update tests * resolve flake8 * add random accumulate_grad_batches * improve test * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update * clean tests * correct bug * Apply suggestions from code review * format * adress comments * update on comments * wip * typo * depreceate enable_pl_optimizer * resolve latest bugs * update * resolve merge * add comment * Update pytorch_lightning/core/lightning.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/deprecated_api/test_remove_1-3.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/connectors/optimizer_connector.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/trainer.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/trainer.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * update restore * add a property * remove setstate as not needed anymore * update test * provide optimizer to on_before_zero_grad * update on comments * update on comments * Update pytorch_lightning/trainer/trainer.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * mofidy import * update changelog * resolve flake8 * update * update * clean doc Co-authored-by: SeanNaren <sean@grid.ai> Co-authored-by: Ubuntu <ubuntu@ip-172-31-62-109.ec2.internal> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> (cherry picked from commit f2e99d617f05ec65fded81ccc6d0d59807c47573)
2021-01-08 21:13:12 +00:00
optimizer = LightningOptimizer._to_lightning_optimizer(optimizer, self.trainer, opt_idx)
# model hook
model_ref.optimizer_step(
self.trainer.current_epoch,
batch_idx,
optimizer,
opt_idx,
train_step_and_backward_closure,
on_tpu=self.trainer._device_type == DeviceType.TPU and _TPU_AVAILABLE,
using_native_amp=using_native_amp,
using_lbfgs=is_lbfgs,
)
def on_before_zero_grad(self, optimizer):
self.trainer.call_hook('on_before_zero_grad', optimizer)
PoC: Accelerator refactor (#5743) * restoring the result from subprocess * fix queue.get() order for results * add missing "block_backward_sync" context manager * add missing "block_backward_sync" context manager * fix sync_batchnorm * fix supported gpu-ids for tuple * fix clip gradients and inf recursion * accelerator selection: added cluster_environment plugin * fix torchelastic test * fix reduce early stopping decision for DDP * fix tests: callbacks, conversion to lightning optimizer * fix lightning optimizer does not pickle * fix setting benchmark and deterministic option * fix slurm amp test * fix prepare_data test and determine node_rank * fix retrieving last path when testing * remove obsolete plugin argument * fix test: test_trainer_config * fix torchscript tests * fix trainer.model access * move properties * fix test_transfer_batch_hook * fix auto_select_gpus * fix omegaconf test * fix test that needs to simulate slurm ddp * add horovod plugin * fix test with named arguments * clean up whitespace * fix datamodules test * remove old accelerators * fix naming * move old plugins * move to plugins * create precision subpackage * create training_type subpackage * fix all new import errors * fix wrong arguments order passed to test * fix LR finder * Added sharded training type and amp plugin * Move clip grad to precision plugin * Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically * Fix import issue, attempting to fix tests * Fix initial test * Reflect hook logic from master, should wrap model after move to device * Optional state consolidation, since master has optimizers not wrapped * change attribute for instance test * reset optimizers optimizers are not used in main process, so state would be wrong. * legacy * imports in accel * legacy2 * trainer imports * fix import errors after rebase * move hook to new setup location * provide unwrapping logic * fix trainer callback system * added ddp2 implementation * fix imports .legacy * move plugins * restore legacy * drop test.py from root * add tpu accelerator and plugins * fixes * fix lightning optimizer merge * reset bugreportmodel * unwrapping * step routing forward * model access * unwrap * opt * integrate distrib_type * sync changes * sync * fixes * add forgotten generators * add missing logic * update * import * missed imports * import fixes * isort * mv f * changelog * format * move helper to parallel plugin * d * add world size * clean up * duplicate * activate ddp_sharded and tpu * set nvidia flags * remove unused colab var * use_tpu <-> on_tpu attrs * make some ddp_cpu and clusterplugin tests pass * Ref/accelerator connector (#5742) * final cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * connector cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * trainer cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * accelerator cleanup + missing logic in accelerator connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add missing changes to callbacks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * reflect accelerator changes to lightning module Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * clean cluster envs Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * cleanup plugins Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add broadcasting Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * yapf * remove plugin connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * plugins * manual optimization * update optimizer routing * add rank to torchelastic * fix memory mixed precision * setstate on trainer for pickling in ddp spawn * add predict method * add back commented accelerator code * adapt test for sync_batch_norm to new plugin * fix deprecated tests * fix ddp cpu choice when no num_processes are given * yapf format * skip a memory test that cannot pass anymore * fix pickle error in spawn plugin * x * avoid * x * fix cyclic import in docs build * add support for sharded * update typing * add sharded and sharded_spawn to distributed types * make unwrap model default * refactor LightningShardedDataParallel similar to LightningDistributedDataParallel * update sharded spawn to reflect changes * update sharded to reflect changes * Merge 1.1.5 changes * fix merge * fix merge * yapf isort * fix merge * yapf isort * fix indentation in test * copy over reinit scheduler implementation from dev1.2 * fix apex tracking calls with dev_debugger * reduce diff to dev1.2, clean up * fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu * sort plugin tests legacy/new * fix error handling for amp on cpu * fix merge fix merge fix merge * [Feat] Resolve manual_backward (#5837) * resolve manual_backward * resolve flake8 * update * resolve for ddp_spawn * resolve flake8 * resolve flake8 * resolve flake8 Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * fix tests/accelerator tests on cpu * [BugFix] Resolve manual optimization (#5852) * resolve manual_optimization * update * update Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856) * resovle a bug * Accelerator refactor sharded rpc (#5854) * rpc branch * merge * update handling of rpc * make devices etc. Optional in RPC * set devices etc. later if necessary * remove devices from sequential * make devices optional in rpc * fix import * uncomment everything * fix cluster selection Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * resolve bug * fix assert in rpc test * resolve a test * fix docs compilation * accelerator refactor - fix for sharded parity test (#5866) * fix memory issue with ddp_spawn * x x x x x x x x x * x * Remove DDP2 as this does not apply * Add missing pre optimizer hook to ensure lambda closure is called * fix apex docstring * [accelerator][BugFix] Resolve some test for 1 gpu (#5863) * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * update * resolve flake8 * update * update * update * update * update * all_gather * update * make plugins work, add misconfig for RPC * update * update * remove breaking test * resolve some tests * resolve flake8 * revert to ddp_spawn Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de> * yapf isort * resolve flake8 * fix apex doctests * fix apex doctests 2 * resolve docs * update drone * clean env * update * update * update * update * merge * Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881) * Fix RPC related tests, clean out old API, update for new accelerator API * Move tests out of legacy folder, update paths and names * Update test_remove_1-4.py * Expose properties for tpu cores/gpus/num_gpus * Add root GPU property * Move properties to properties.py * move tests that were previously in drone * Fix root GPU property (#5908) * Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator * Add missing tests back * fix best model path transfer when no checkpoint callback available * Fix setup hook order [wip] (#5858) * Call trainer setup hook before accelerator setup * Add test case * add new test * typo * fix callback order in test Co-authored-by: tchaton <thomas@grid.ai> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * rename ddp sequential -> rpc sequential for special test * revert * fix stupid merge problem * Use property in connector for sampler (#5913) * merge the import conflicts * fix spawning of processes in slurm * [wip] Fix some bugs for TPU [skip ci] (#5878) * fixed for single tpu * fixed spawn * fixed spawn * update * update * wip * resolve bugs * resolve bug * update on comment * removed decorator * resolve comments * set to 4 * update * update * need cleaning * update * update * update * resolve flake8 * resolve bugs * exclude broadcast * resolve bugs * change test * update * update * skip if meet fails * properly raise trace * update * add catch * wrap test * resolve typo * update * typo Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> * resolve some tests * update * fix imports * update * resolve flake8 * update azure pipeline * skip a sharded test on cpu that requires a gpu * resolve tpus * resolve bug * resolve flake8 * update * updat utils * revert permission change on files * suggestions from carlos Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting changes * remove incomplete comment * Update pytorch_lightning/accelerators/__init__.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting change * add types * warn 1.7 ddp manual backward only if ddp kwarg unset * yapf + isort * pep8 unused imports * fix cyclic import in docs * Apply suggestions from code review * typer in accelerator.py * typo * Apply suggestions from code review * formatting * update on comments * update typo * Update pytorch_lightning/trainer/properties.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * update * suggestion from code review * suggestion from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: SeanNaren <sean@grid.ai> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
def optimizer_zero_grad(self, batch_idx, optimizer, opt_idx):
self.trainer.accelerator.optimizer_zero_grad(self.trainer.current_epoch, batch_idx, optimizer, opt_idx)
PoC: Accelerator refactor (#5743) * restoring the result from subprocess * fix queue.get() order for results * add missing "block_backward_sync" context manager * add missing "block_backward_sync" context manager * fix sync_batchnorm * fix supported gpu-ids for tuple * fix clip gradients and inf recursion * accelerator selection: added cluster_environment plugin * fix torchelastic test * fix reduce early stopping decision for DDP * fix tests: callbacks, conversion to lightning optimizer * fix lightning optimizer does not pickle * fix setting benchmark and deterministic option * fix slurm amp test * fix prepare_data test and determine node_rank * fix retrieving last path when testing * remove obsolete plugin argument * fix test: test_trainer_config * fix torchscript tests * fix trainer.model access * move properties * fix test_transfer_batch_hook * fix auto_select_gpus * fix omegaconf test * fix test that needs to simulate slurm ddp * add horovod plugin * fix test with named arguments * clean up whitespace * fix datamodules test * remove old accelerators * fix naming * move old plugins * move to plugins * create precision subpackage * create training_type subpackage * fix all new import errors * fix wrong arguments order passed to test * fix LR finder * Added sharded training type and amp plugin * Move clip grad to precision plugin * Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically * Fix import issue, attempting to fix tests * Fix initial test * Reflect hook logic from master, should wrap model after move to device * Optional state consolidation, since master has optimizers not wrapped * change attribute for instance test * reset optimizers optimizers are not used in main process, so state would be wrong. * legacy * imports in accel * legacy2 * trainer imports * fix import errors after rebase * move hook to new setup location * provide unwrapping logic * fix trainer callback system * added ddp2 implementation * fix imports .legacy * move plugins * restore legacy * drop test.py from root * add tpu accelerator and plugins * fixes * fix lightning optimizer merge * reset bugreportmodel * unwrapping * step routing forward * model access * unwrap * opt * integrate distrib_type * sync changes * sync * fixes * add forgotten generators * add missing logic * update * import * missed imports * import fixes * isort * mv f * changelog * format * move helper to parallel plugin * d * add world size * clean up * duplicate * activate ddp_sharded and tpu * set nvidia flags * remove unused colab var * use_tpu <-> on_tpu attrs * make some ddp_cpu and clusterplugin tests pass * Ref/accelerator connector (#5742) * final cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * connector cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * trainer cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * accelerator cleanup + missing logic in accelerator connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add missing changes to callbacks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * reflect accelerator changes to lightning module Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * clean cluster envs Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * cleanup plugins Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add broadcasting Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * yapf * remove plugin connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * plugins * manual optimization * update optimizer routing * add rank to torchelastic * fix memory mixed precision * setstate on trainer for pickling in ddp spawn * add predict method * add back commented accelerator code * adapt test for sync_batch_norm to new plugin * fix deprecated tests * fix ddp cpu choice when no num_processes are given * yapf format * skip a memory test that cannot pass anymore * fix pickle error in spawn plugin * x * avoid * x * fix cyclic import in docs build * add support for sharded * update typing * add sharded and sharded_spawn to distributed types * make unwrap model default * refactor LightningShardedDataParallel similar to LightningDistributedDataParallel * update sharded spawn to reflect changes * update sharded to reflect changes * Merge 1.1.5 changes * fix merge * fix merge * yapf isort * fix merge * yapf isort * fix indentation in test * copy over reinit scheduler implementation from dev1.2 * fix apex tracking calls with dev_debugger * reduce diff to dev1.2, clean up * fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu * sort plugin tests legacy/new * fix error handling for amp on cpu * fix merge fix merge fix merge * [Feat] Resolve manual_backward (#5837) * resolve manual_backward * resolve flake8 * update * resolve for ddp_spawn * resolve flake8 * resolve flake8 * resolve flake8 Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * fix tests/accelerator tests on cpu * [BugFix] Resolve manual optimization (#5852) * resolve manual_optimization * update * update Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856) * resovle a bug * Accelerator refactor sharded rpc (#5854) * rpc branch * merge * update handling of rpc * make devices etc. Optional in RPC * set devices etc. later if necessary * remove devices from sequential * make devices optional in rpc * fix import * uncomment everything * fix cluster selection Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * resolve bug * fix assert in rpc test * resolve a test * fix docs compilation * accelerator refactor - fix for sharded parity test (#5866) * fix memory issue with ddp_spawn * x x x x x x x x x * x * Remove DDP2 as this does not apply * Add missing pre optimizer hook to ensure lambda closure is called * fix apex docstring * [accelerator][BugFix] Resolve some test for 1 gpu (#5863) * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * update * resolve flake8 * update * update * update * update * update * all_gather * update * make plugins work, add misconfig for RPC * update * update * remove breaking test * resolve some tests * resolve flake8 * revert to ddp_spawn Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de> * yapf isort * resolve flake8 * fix apex doctests * fix apex doctests 2 * resolve docs * update drone * clean env * update * update * update * update * merge * Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881) * Fix RPC related tests, clean out old API, update for new accelerator API * Move tests out of legacy folder, update paths and names * Update test_remove_1-4.py * Expose properties for tpu cores/gpus/num_gpus * Add root GPU property * Move properties to properties.py * move tests that were previously in drone * Fix root GPU property (#5908) * Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator * Add missing tests back * fix best model path transfer when no checkpoint callback available * Fix setup hook order [wip] (#5858) * Call trainer setup hook before accelerator setup * Add test case * add new test * typo * fix callback order in test Co-authored-by: tchaton <thomas@grid.ai> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * rename ddp sequential -> rpc sequential for special test * revert * fix stupid merge problem * Use property in connector for sampler (#5913) * merge the import conflicts * fix spawning of processes in slurm * [wip] Fix some bugs for TPU [skip ci] (#5878) * fixed for single tpu * fixed spawn * fixed spawn * update * update * wip * resolve bugs * resolve bug * update on comment * removed decorator * resolve comments * set to 4 * update * update * need cleaning * update * update * update * resolve flake8 * resolve bugs * exclude broadcast * resolve bugs * change test * update * update * skip if meet fails * properly raise trace * update * add catch * wrap test * resolve typo * update * typo Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> * resolve some tests * update * fix imports * update * resolve flake8 * update azure pipeline * skip a sharded test on cpu that requires a gpu * resolve tpus * resolve bug * resolve flake8 * update * updat utils * revert permission change on files * suggestions from carlos Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting changes * remove incomplete comment * Update pytorch_lightning/accelerators/__init__.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting change * add types * warn 1.7 ddp manual backward only if ddp kwarg unset * yapf + isort * pep8 unused imports * fix cyclic import in docs * Apply suggestions from code review * typer in accelerator.py * typo * Apply suggestions from code review * formatting * update on comments * update typo * Update pytorch_lightning/trainer/properties.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * update * suggestion from code review * suggestion from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: SeanNaren <sean@grid.ai> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
def track_and_norm_grad(self, optimizer):
# track gradient norms
grad_norm_dic = self._track_gradient_norm()
# clip gradients
self.trainer.accelerator.clip_gradients(
optimizer, self.trainer.gradient_clip_val, gradient_clip_algorithm=self.trainer.gradient_clip_algorithm
)
self._cur_grad_norm_dict = grad_norm_dic
def _track_gradient_norm(self):
grad_norm_dict = {}
if (self.global_step + 1) % self.trainer.log_every_n_steps == 0:
if float(self.trainer.track_grad_norm) > 0:
model = self.trainer.lightning_module
grad_norm_dict = grad_norm(model, self.trainer.track_grad_norm)
return grad_norm_dict
def _tbptt_split_batch(self, batch: Any) -> List[Any]:
splits = [batch]
truncated_bptt_enabled = self._truncated_bptt_enabled()
if truncated_bptt_enabled:
model_ref = self.trainer.lightning_module
with self.trainer.profiler.profile("tbptt_split_batch"):
splits = model_ref.tbptt_split_batch(batch, self._truncated_bptt_steps())
return splits
def run_training_epoch(self):
# modify dataloader if needed (ddp, etc...)
train_dataloader = self.trainer.accelerator.process_dataloader(self.trainer.train_dataloader)
# track epoch output
epoch_output = [[] for _ in range(self.num_optimizers)]
train_dataloader = self.trainer.data_connector.get_profiled_train_dataloader(train_dataloader)
dataloader_idx = 0
val_loop_called = False
Add Support for multiple train loaders (#1959) * add support for wrong dtype in apply_func * apply loader resetting to possible collection of loaders * add combined loader iter class * integrate combined loader iter to training loop * fix imports * fix imports * finish supporters * add tests for supporters * add test for model with multiple loaders * fix trainer integration * fix instance check * Train loaders (#4032) * patch for issues discussed in #1959, encapsulating underlying datastructures returned from train_dataloader * update data_loading.py to it uses patch discussed in #1959 * rename class * Separate CombinedLoaderIterator into two classes, and update related tests. (#4606) * Fix the bugs after rebasing. * Add custom get_len for apply_to_collection * Refactor MultiIterator to be as CombinedLoaderIterator * To get the right num_training_batches. Call the wrapper for multi trainloader in data_loading.py, instead of training_loop.py * Reload _loader_iters when calling __iter__ * Don't transform DataLoader to CombinedLoaderIterator when it's along * Updates test_fit_multiple_train_loaders for testing num_training_batches * Seperate CombinedLoaderIterator into CombinedLoaderIterator and CombinedDataLoader. Add CombinedDataset for unified DataLoader format. * Initialize CombinedDataLoader before calculating num_training_batches. Also updating self._worker_check for multiple loaders * Update tests for supporters * Update tests for multiple trainloaders. Add tests about few_workers for multiple loaders. * Fix pep8 issues * Add tests for train_loader_patch.py * Add descriptions to multiple_trainloader_mode * Remove unused variables * Add docstrings and typing * Add more tests for better converage * Remove unused commented codes * Add sampler property * Remove extract_dataset * Update typing * pep8 * Update train_loader_patch.py * Apply suggestions from code review Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/supporters.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * reviewer comments * fix stupid import * add docs * add back line separator * fix line sep * pep8 * Apply suggestions from code review * fix * fix * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * flake8 Co-authored-by: Justus Schock <justusschock@justuss-mbp.fritz.box> Co-authored-by: Christofer Fransson <christofer_fransson@yahoo.com> Co-authored-by: YI-LIN SUNG <r06942076@ntu.edu.tw> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz>
2021-01-04 19:57:53 +00:00
batch_idx = None
is_last_batch = None
for batch_idx, (batch, is_last_batch) in train_dataloader:
self.batch_idx = batch_idx
self.trainer.is_last_batch = is_last_batch
# ------------------------------------
# TRAINING_STEP + TRAINING_STEP_END
# ------------------------------------
2020-11-27 18:00:48 +00:00
with self.trainer.profiler.profile("run_training_batch"):
batch_output = self.run_training_batch(batch, batch_idx, dataloader_idx)
# when returning -1 from train_step, we end epoch early
if batch_output.signal == -1:
break
# hook
# TODO: add outputs to batches
self.on_train_batch_end(
epoch_output,
batch_output.training_step_output_for_epoch_end,
batch,
batch_idx,
dataloader_idx,
)
# -----------------------------------------
# SAVE METRICS TO LOGGERS
# -----------------------------------------
self.trainer.logger_connector.log_train_step_metrics(batch_output)
# -----------------------------------------
# VALIDATE IF NEEDED
# -----------------------------------------
should_check_val = self._should_check_val_fx(batch_idx, is_last_batch)
if should_check_val:
self.trainer.validating = True
self.trainer._run_evaluation()
self.trainer.training = True
val_loop_called = True
# -----------------------------------------
# SAVE LOGGERS (ie: Tensorboard, etc...)
# -----------------------------------------
self.save_loggers_on_train_batch_end()
# update LR schedulers
monitor_metrics = deepcopy(self.trainer.logger_connector.callback_metrics)
self.update_train_loop_lr_schedulers(monitor_metrics=monitor_metrics)
self.trainer.checkpoint_connector.has_trained = True
# max steps reached, end training
if (
self.max_steps is not None and self.max_steps <= self.global_step + 1
and self._accumulated_batches_reached()
):
break
# end epoch early
# stop when the flag is changed or we've gone past the amount
# requested in the batches
if self.trainer.should_stop:
break
self.total_batch_idx += 1
# stop epoch if we limited the number of training batches
if self._num_training_batches_reached(is_last_batch):
break
# progress global step according to grads progress
self.increment_accumulated_grad_global_step()
if batch_idx is None:
# dataloader/iterator did not produce a batch
return
# handle epoch_output on epoch end
self.on_train_epoch_end(epoch_output)
[feat] Logging refactor 2/n - train (#4495) * update logging * solve more bugs * replace Mapping by Dict * update on comments * resolve pep8 * Apply suggestions from code review Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * typo * update for coverage * update test * update * Update tests/models/test_hooks.py Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> * Update tests/models/test_hooks.py Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> * update on comments * remove deepcopy * remove useless look for * another small optim * extra optim * remove lastest optim, can be source of bug * resolve bug * add docstring * optimize coverage * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging_tests/test_distributed_logging.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/evaluation_loop.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging/test_logger_connector.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging_tests/test_train_loop_logging_1_0.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * update * update on comments * update parity speed * get it down to 0.65 * update * 0.8 max_dif Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-11-05 22:27:04 +00:00
# log epoch metrics
self.trainer.logger_connector.log_train_epoch_end_metrics(epoch_output)
should_check_val = self._should_check_val_fx(batch_idx, is_last_batch, on_epoch=True)
should_skip_eval = self.trainer.evaluation_loop.should_skip_evaluation(self.trainer.num_val_batches)
should_train_only = self.trainer.disable_validation or should_skip_eval
# update epoch level lr_schedulers if no val loop outside train loop is triggered
if (val_loop_called and not should_check_val) or should_train_only:
self.trainer.optimizer_connector.update_learning_rates(interval='epoch')
if should_train_only:
self.check_checkpoint_callback(True)
if should_check_val:
self.trainer.validating = True
self.trainer._run_evaluation(on_epoch=True)
self.trainer.training = True
# increment the global step once
# progress global step according to grads progress
self.increment_accumulated_grad_global_step()
def on_train_epoch_end(self, epoch_output: List[List[List[Result]]]) -> None:
# inform logger the batch loop has finished
self.trainer.logger_connector.on_train_epoch_end()
# prepare epoch output
processed_epoch_output = TrainLoop._prepare_outputs(epoch_output, batch_mode=False)
# get the model and call model.training_epoch_end
model = self.trainer.lightning_module
if is_overridden('training_epoch_end', model=model):
# run training_epoch_end
# refresh the result for custom logging at the epoch level
model._current_fx_name = 'training_epoch_end'
# lightningmodule hook
training_epoch_end_output = model.training_epoch_end(processed_epoch_output)
if training_epoch_end_output is not None:
raise MisconfigurationException(
'training_epoch_end expects a return of None. '
'HINT: remove the return statement in training_epoch_end'
)
# capture logging
self.trainer.logger_connector.cache_logged_metrics()
# call train epoch end hooks
self._on_train_epoch_end_hook(processed_epoch_output)
self.trainer.call_hook('on_epoch_end')
def _on_train_epoch_end_hook(self, processed_epoch_output) -> None:
# We cannot rely on Trainer.call_hook because the signatures might be different across
# lightning module and callback
# As a result, we need to inspect if the module accepts `outputs` in `on_train_epoch_end`
# This implementation is copied from Trainer.call_hook
hook_name = "on_train_epoch_end"
# set hook_name to model + reset Result obj
skip = self.trainer._reset_result_and_set_hook_fx_name(hook_name)
# always profile hooks
with self.trainer.profiler.profile(hook_name):
# first call trainer hook
if hasattr(self.trainer, hook_name):
trainer_hook = getattr(self.trainer, hook_name)
trainer_hook(processed_epoch_output)
# next call hook in lightningModule
model_ref = self.trainer.lightning_module
if is_overridden(hook_name, model_ref):
hook_fx = getattr(model_ref, hook_name)
if is_param_in_hook_signature(hook_fx, "outputs"):
self.warning_cache.warn(
"The signature of `ModelHooks.on_train_epoch_end` has changed in v1.3."
" `outputs` parameter has been deprecated."
" Support for the old signature will be removed in v1.5", DeprecationWarning
)
model_ref.on_train_epoch_end(processed_epoch_output)
else:
model_ref.on_train_epoch_end()
# if the PL module doesn't have the hook then call the accelerator
# used to auto-reduce things for the user with Results obj
elif hasattr(self.trainer.accelerator, hook_name):
accelerator_hook = getattr(self.trainer.accelerator, hook_name)
accelerator_hook()
if not skip:
self.trainer._cache_logged_metrics()
def run_training_batch(self, batch, batch_idx, dataloader_idx):
# track grad norms
grad_norm_dic = {}
# bookkeeping
self.trainer.hiddens = None
optimizers = self.prepare_optimizers()
# track all outputs across time and num of optimizers
batch_outputs = [[] for _ in range(len(optimizers))]
if batch is None:
self.warning_cache.warn("train_dataloader yielded None. If this was on purpose, ignore this warning...")
return AttributeDict(
signal=0,
grad_norm_dic=grad_norm_dic,
training_step_output_for_epoch_end=batch_outputs,
)
# hook
response = self.trainer.call_hook("on_batch_start")
if response == -1:
return AttributeDict(signal=-1, grad_norm_dic=grad_norm_dic)
# hook
response = self.trainer.call_hook("on_train_batch_start", batch, batch_idx, dataloader_idx)
if response == -1:
return AttributeDict(signal=-1, grad_norm_dic=grad_norm_dic)
# lightning module hook
splits = self._tbptt_split_batch(batch)
for split_idx, split_batch in enumerate(splits):
# create an iterable for optimizers and loop over them
for opt_idx, optimizer in optimizers:
# toggle model params + set info to logger_connector
self.run_train_split_start(split_idx, split_batch, opt_idx, optimizer)
if self.should_accumulate():
# For gradient accumulation
# -------------------
# calculate loss (train step + train step end)
# -------------------
# automatic_optimization=True: perform dpp sync only when performing optimizer_step
# automatic_optimization=False: don't block synchronization here
with self.block_ddp_sync_behaviour():
self.training_step_and_backward(
split_batch, batch_idx, opt_idx, optimizer, self.trainer.hiddens
)
batch_outputs = self._process_closure_result(
batch_outputs=batch_outputs,
opt_idx=opt_idx,
)
# ------------------------------
# BACKWARD PASS
# ------------------------------
# gradient update with accumulated gradients
else:
if self.trainer.lightning_module.automatic_optimization:
def train_step_and_backward_closure():
result = self.training_step_and_backward(
split_batch, batch_idx, opt_idx, optimizer, self.trainer.hiddens
)
return None if result is None else result.loss
# optimizer step
self.optimizer_step(optimizer, opt_idx, batch_idx, train_step_and_backward_closure)
2020-10-12 14:06:17 +00:00
else:
[feat] Logging refactor 2/n - train (#4495) * update logging * solve more bugs * replace Mapping by Dict * update on comments * resolve pep8 * Apply suggestions from code review Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * typo * update for coverage * update test * update * Update tests/models/test_hooks.py Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> * Update tests/models/test_hooks.py Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> * update on comments * remove deepcopy * remove useless look for * another small optim * extra optim * remove lastest optim, can be source of bug * resolve bug * add docstring * optimize coverage * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging_tests/test_distributed_logging.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/evaluation_loop.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging/test_logger_connector.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging_tests/test_train_loop_logging_1_0.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * update * update on comments * update parity speed * get it down to 0.65 * update * 0.8 max_dif Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-11-05 22:27:04 +00:00
self._curr_step_result = self.training_step(
split_batch, batch_idx, opt_idx, self.trainer.hiddens
[feat] Logging refactor 2/n - train (#4495) * update logging * solve more bugs * replace Mapping by Dict * update on comments * resolve pep8 * Apply suggestions from code review Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * typo * update for coverage * update test * update * Update tests/models/test_hooks.py Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> * Update tests/models/test_hooks.py Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> * update on comments * remove deepcopy * remove useless look for * another small optim * extra optim * remove lastest optim, can be source of bug * resolve bug * add docstring * optimize coverage * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging_tests/test_distributed_logging.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/evaluation_loop.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging/test_logger_connector.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging_tests/test_train_loop_logging_1_0.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * update * update on comments * update parity speed * get it down to 0.65 * update * 0.8 max_dif Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-11-05 22:27:04 +00:00
)
2020-10-12 14:06:17 +00:00
if self._curr_step_result is None:
# user decided to skip optimization
# make sure to zero grad.
continue
batch_outputs = self._process_closure_result(
batch_outputs=batch_outputs,
opt_idx=opt_idx,
)
# todo: Properly aggregate grad_norm accros opt_idx and split_idx
grad_norm_dic = self._cur_grad_norm_dict
self._cur_grad_norm_dict = None
# update running loss + reset accumulated loss
self.update_running_loss()
result = AttributeDict(
signal=0,
grad_norm_dic=grad_norm_dic,
training_step_output_for_epoch_end=batch_outputs,
)
return result
@contextmanager
PoC: Accelerator refactor (#5743) * restoring the result from subprocess * fix queue.get() order for results * add missing "block_backward_sync" context manager * add missing "block_backward_sync" context manager * fix sync_batchnorm * fix supported gpu-ids for tuple * fix clip gradients and inf recursion * accelerator selection: added cluster_environment plugin * fix torchelastic test * fix reduce early stopping decision for DDP * fix tests: callbacks, conversion to lightning optimizer * fix lightning optimizer does not pickle * fix setting benchmark and deterministic option * fix slurm amp test * fix prepare_data test and determine node_rank * fix retrieving last path when testing * remove obsolete plugin argument * fix test: test_trainer_config * fix torchscript tests * fix trainer.model access * move properties * fix test_transfer_batch_hook * fix auto_select_gpus * fix omegaconf test * fix test that needs to simulate slurm ddp * add horovod plugin * fix test with named arguments * clean up whitespace * fix datamodules test * remove old accelerators * fix naming * move old plugins * move to plugins * create precision subpackage * create training_type subpackage * fix all new import errors * fix wrong arguments order passed to test * fix LR finder * Added sharded training type and amp plugin * Move clip grad to precision plugin * Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically * Fix import issue, attempting to fix tests * Fix initial test * Reflect hook logic from master, should wrap model after move to device * Optional state consolidation, since master has optimizers not wrapped * change attribute for instance test * reset optimizers optimizers are not used in main process, so state would be wrong. * legacy * imports in accel * legacy2 * trainer imports * fix import errors after rebase * move hook to new setup location * provide unwrapping logic * fix trainer callback system * added ddp2 implementation * fix imports .legacy * move plugins * restore legacy * drop test.py from root * add tpu accelerator and plugins * fixes * fix lightning optimizer merge * reset bugreportmodel * unwrapping * step routing forward * model access * unwrap * opt * integrate distrib_type * sync changes * sync * fixes * add forgotten generators * add missing logic * update * import * missed imports * import fixes * isort * mv f * changelog * format * move helper to parallel plugin * d * add world size * clean up * duplicate * activate ddp_sharded and tpu * set nvidia flags * remove unused colab var * use_tpu <-> on_tpu attrs * make some ddp_cpu and clusterplugin tests pass * Ref/accelerator connector (#5742) * final cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * connector cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * trainer cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * accelerator cleanup + missing logic in accelerator connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add missing changes to callbacks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * reflect accelerator changes to lightning module Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * clean cluster envs Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * cleanup plugins Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add broadcasting Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * yapf * remove plugin connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * plugins * manual optimization * update optimizer routing * add rank to torchelastic * fix memory mixed precision * setstate on trainer for pickling in ddp spawn * add predict method * add back commented accelerator code * adapt test for sync_batch_norm to new plugin * fix deprecated tests * fix ddp cpu choice when no num_processes are given * yapf format * skip a memory test that cannot pass anymore * fix pickle error in spawn plugin * x * avoid * x * fix cyclic import in docs build * add support for sharded * update typing * add sharded and sharded_spawn to distributed types * make unwrap model default * refactor LightningShardedDataParallel similar to LightningDistributedDataParallel * update sharded spawn to reflect changes * update sharded to reflect changes * Merge 1.1.5 changes * fix merge * fix merge * yapf isort * fix merge * yapf isort * fix indentation in test * copy over reinit scheduler implementation from dev1.2 * fix apex tracking calls with dev_debugger * reduce diff to dev1.2, clean up * fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu * sort plugin tests legacy/new * fix error handling for amp on cpu * fix merge fix merge fix merge * [Feat] Resolve manual_backward (#5837) * resolve manual_backward * resolve flake8 * update * resolve for ddp_spawn * resolve flake8 * resolve flake8 * resolve flake8 Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * fix tests/accelerator tests on cpu * [BugFix] Resolve manual optimization (#5852) * resolve manual_optimization * update * update Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856) * resovle a bug * Accelerator refactor sharded rpc (#5854) * rpc branch * merge * update handling of rpc * make devices etc. Optional in RPC * set devices etc. later if necessary * remove devices from sequential * make devices optional in rpc * fix import * uncomment everything * fix cluster selection Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * resolve bug * fix assert in rpc test * resolve a test * fix docs compilation * accelerator refactor - fix for sharded parity test (#5866) * fix memory issue with ddp_spawn * x x x x x x x x x * x * Remove DDP2 as this does not apply * Add missing pre optimizer hook to ensure lambda closure is called * fix apex docstring * [accelerator][BugFix] Resolve some test for 1 gpu (#5863) * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * update * resolve flake8 * update * update * update * update * update * all_gather * update * make plugins work, add misconfig for RPC * update * update * remove breaking test * resolve some tests * resolve flake8 * revert to ddp_spawn Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de> * yapf isort * resolve flake8 * fix apex doctests * fix apex doctests 2 * resolve docs * update drone * clean env * update * update * update * update * merge * Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881) * Fix RPC related tests, clean out old API, update for new accelerator API * Move tests out of legacy folder, update paths and names * Update test_remove_1-4.py * Expose properties for tpu cores/gpus/num_gpus * Add root GPU property * Move properties to properties.py * move tests that were previously in drone * Fix root GPU property (#5908) * Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator * Add missing tests back * fix best model path transfer when no checkpoint callback available * Fix setup hook order [wip] (#5858) * Call trainer setup hook before accelerator setup * Add test case * add new test * typo * fix callback order in test Co-authored-by: tchaton <thomas@grid.ai> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * rename ddp sequential -> rpc sequential for special test * revert * fix stupid merge problem * Use property in connector for sampler (#5913) * merge the import conflicts * fix spawning of processes in slurm * [wip] Fix some bugs for TPU [skip ci] (#5878) * fixed for single tpu * fixed spawn * fixed spawn * update * update * wip * resolve bugs * resolve bug * update on comment * removed decorator * resolve comments * set to 4 * update * update * need cleaning * update * update * update * resolve flake8 * resolve bugs * exclude broadcast * resolve bugs * change test * update * update * skip if meet fails * properly raise trace * update * add catch * wrap test * resolve typo * update * typo Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> * resolve some tests * update * fix imports * update * resolve flake8 * update azure pipeline * skip a sharded test on cpu that requires a gpu * resolve tpus * resolve bug * resolve flake8 * update * updat utils * revert permission change on files * suggestions from carlos Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting changes * remove incomplete comment * Update pytorch_lightning/accelerators/__init__.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting change * add types * warn 1.7 ddp manual backward only if ddp kwarg unset * yapf + isort * pep8 unused imports * fix cyclic import in docs * Apply suggestions from code review * typer in accelerator.py * typo * Apply suggestions from code review * formatting * update on comments * update typo * Update pytorch_lightning/trainer/properties.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * update * suggestion from code review * suggestion from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: SeanNaren <sean@grid.ai> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
def block_ddp_sync_behaviour(self, should_block_sync: bool = False):
"""
automatic_optimization = True
Blocks ddp sync gradients behaviour on backwards pass.
This is useful for skipping sync when accumulating gradients, reducing communication overhead
automatic_optimization = False
do not block ddp gradient sync when using manual optimization
as gradients are needed within the training step
2021-01-26 01:21:00 +00:00
Returns:
context manager with sync behaviour off
"""
PoC: Accelerator refactor (#5743) * restoring the result from subprocess * fix queue.get() order for results * add missing "block_backward_sync" context manager * add missing "block_backward_sync" context manager * fix sync_batchnorm * fix supported gpu-ids for tuple * fix clip gradients and inf recursion * accelerator selection: added cluster_environment plugin * fix torchelastic test * fix reduce early stopping decision for DDP * fix tests: callbacks, conversion to lightning optimizer * fix lightning optimizer does not pickle * fix setting benchmark and deterministic option * fix slurm amp test * fix prepare_data test and determine node_rank * fix retrieving last path when testing * remove obsolete plugin argument * fix test: test_trainer_config * fix torchscript tests * fix trainer.model access * move properties * fix test_transfer_batch_hook * fix auto_select_gpus * fix omegaconf test * fix test that needs to simulate slurm ddp * add horovod plugin * fix test with named arguments * clean up whitespace * fix datamodules test * remove old accelerators * fix naming * move old plugins * move to plugins * create precision subpackage * create training_type subpackage * fix all new import errors * fix wrong arguments order passed to test * fix LR finder * Added sharded training type and amp plugin * Move clip grad to precision plugin * Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically * Fix import issue, attempting to fix tests * Fix initial test * Reflect hook logic from master, should wrap model after move to device * Optional state consolidation, since master has optimizers not wrapped * change attribute for instance test * reset optimizers optimizers are not used in main process, so state would be wrong. * legacy * imports in accel * legacy2 * trainer imports * fix import errors after rebase * move hook to new setup location * provide unwrapping logic * fix trainer callback system * added ddp2 implementation * fix imports .legacy * move plugins * restore legacy * drop test.py from root * add tpu accelerator and plugins * fixes * fix lightning optimizer merge * reset bugreportmodel * unwrapping * step routing forward * model access * unwrap * opt * integrate distrib_type * sync changes * sync * fixes * add forgotten generators * add missing logic * update * import * missed imports * import fixes * isort * mv f * changelog * format * move helper to parallel plugin * d * add world size * clean up * duplicate * activate ddp_sharded and tpu * set nvidia flags * remove unused colab var * use_tpu <-> on_tpu attrs * make some ddp_cpu and clusterplugin tests pass * Ref/accelerator connector (#5742) * final cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * connector cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * trainer cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * accelerator cleanup + missing logic in accelerator connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add missing changes to callbacks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * reflect accelerator changes to lightning module Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * clean cluster envs Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * cleanup plugins Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add broadcasting Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * yapf * remove plugin connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * plugins * manual optimization * update optimizer routing * add rank to torchelastic * fix memory mixed precision * setstate on trainer for pickling in ddp spawn * add predict method * add back commented accelerator code * adapt test for sync_batch_norm to new plugin * fix deprecated tests * fix ddp cpu choice when no num_processes are given * yapf format * skip a memory test that cannot pass anymore * fix pickle error in spawn plugin * x * avoid * x * fix cyclic import in docs build * add support for sharded * update typing * add sharded and sharded_spawn to distributed types * make unwrap model default * refactor LightningShardedDataParallel similar to LightningDistributedDataParallel * update sharded spawn to reflect changes * update sharded to reflect changes * Merge 1.1.5 changes * fix merge * fix merge * yapf isort * fix merge * yapf isort * fix indentation in test * copy over reinit scheduler implementation from dev1.2 * fix apex tracking calls with dev_debugger * reduce diff to dev1.2, clean up * fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu * sort plugin tests legacy/new * fix error handling for amp on cpu * fix merge fix merge fix merge * [Feat] Resolve manual_backward (#5837) * resolve manual_backward * resolve flake8 * update * resolve for ddp_spawn * resolve flake8 * resolve flake8 * resolve flake8 Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * fix tests/accelerator tests on cpu * [BugFix] Resolve manual optimization (#5852) * resolve manual_optimization * update * update Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856) * resovle a bug * Accelerator refactor sharded rpc (#5854) * rpc branch * merge * update handling of rpc * make devices etc. Optional in RPC * set devices etc. later if necessary * remove devices from sequential * make devices optional in rpc * fix import * uncomment everything * fix cluster selection Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * resolve bug * fix assert in rpc test * resolve a test * fix docs compilation * accelerator refactor - fix for sharded parity test (#5866) * fix memory issue with ddp_spawn * x x x x x x x x x * x * Remove DDP2 as this does not apply * Add missing pre optimizer hook to ensure lambda closure is called * fix apex docstring * [accelerator][BugFix] Resolve some test for 1 gpu (#5863) * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * update * resolve flake8 * update * update * update * update * update * all_gather * update * make plugins work, add misconfig for RPC * update * update * remove breaking test * resolve some tests * resolve flake8 * revert to ddp_spawn Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de> * yapf isort * resolve flake8 * fix apex doctests * fix apex doctests 2 * resolve docs * update drone * clean env * update * update * update * update * merge * Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881) * Fix RPC related tests, clean out old API, update for new accelerator API * Move tests out of legacy folder, update paths and names * Update test_remove_1-4.py * Expose properties for tpu cores/gpus/num_gpus * Add root GPU property * Move properties to properties.py * move tests that were previously in drone * Fix root GPU property (#5908) * Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator * Add missing tests back * fix best model path transfer when no checkpoint callback available * Fix setup hook order [wip] (#5858) * Call trainer setup hook before accelerator setup * Add test case * add new test * typo * fix callback order in test Co-authored-by: tchaton <thomas@grid.ai> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * rename ddp sequential -> rpc sequential for special test * revert * fix stupid merge problem * Use property in connector for sampler (#5913) * merge the import conflicts * fix spawning of processes in slurm * [wip] Fix some bugs for TPU [skip ci] (#5878) * fixed for single tpu * fixed spawn * fixed spawn * update * update * wip * resolve bugs * resolve bug * update on comment * removed decorator * resolve comments * set to 4 * update * update * need cleaning * update * update * update * resolve flake8 * resolve bugs * exclude broadcast * resolve bugs * change test * update * update * skip if meet fails * properly raise trace * update * add catch * wrap test * resolve typo * update * typo Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> * resolve some tests * update * fix imports * update * resolve flake8 * update azure pipeline * skip a sharded test on cpu that requires a gpu * resolve tpus * resolve bug * resolve flake8 * update * updat utils * revert permission change on files * suggestions from carlos Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting changes * remove incomplete comment * Update pytorch_lightning/accelerators/__init__.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting change * add types * warn 1.7 ddp manual backward only if ddp kwarg unset * yapf + isort * pep8 unused imports * fix cyclic import in docs * Apply suggestions from code review * typer in accelerator.py * typo * Apply suggestions from code review * formatting * update on comments * update typo * Update pytorch_lightning/trainer/properties.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * update * suggestion from code review * suggestion from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: SeanNaren <sean@grid.ai> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
if (
isinstance(self.trainer.training_type_plugin, ParallelPlugin)
and (self.trainer.lightning_module.automatic_optimization or should_block_sync)
PoC: Accelerator refactor (#5743) * restoring the result from subprocess * fix queue.get() order for results * add missing "block_backward_sync" context manager * add missing "block_backward_sync" context manager * fix sync_batchnorm * fix supported gpu-ids for tuple * fix clip gradients and inf recursion * accelerator selection: added cluster_environment plugin * fix torchelastic test * fix reduce early stopping decision for DDP * fix tests: callbacks, conversion to lightning optimizer * fix lightning optimizer does not pickle * fix setting benchmark and deterministic option * fix slurm amp test * fix prepare_data test and determine node_rank * fix retrieving last path when testing * remove obsolete plugin argument * fix test: test_trainer_config * fix torchscript tests * fix trainer.model access * move properties * fix test_transfer_batch_hook * fix auto_select_gpus * fix omegaconf test * fix test that needs to simulate slurm ddp * add horovod plugin * fix test with named arguments * clean up whitespace * fix datamodules test * remove old accelerators * fix naming * move old plugins * move to plugins * create precision subpackage * create training_type subpackage * fix all new import errors * fix wrong arguments order passed to test * fix LR finder * Added sharded training type and amp plugin * Move clip grad to precision plugin * Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically * Fix import issue, attempting to fix tests * Fix initial test * Reflect hook logic from master, should wrap model after move to device * Optional state consolidation, since master has optimizers not wrapped * change attribute for instance test * reset optimizers optimizers are not used in main process, so state would be wrong. * legacy * imports in accel * legacy2 * trainer imports * fix import errors after rebase * move hook to new setup location * provide unwrapping logic * fix trainer callback system * added ddp2 implementation * fix imports .legacy * move plugins * restore legacy * drop test.py from root * add tpu accelerator and plugins * fixes * fix lightning optimizer merge * reset bugreportmodel * unwrapping * step routing forward * model access * unwrap * opt * integrate distrib_type * sync changes * sync * fixes * add forgotten generators * add missing logic * update * import * missed imports * import fixes * isort * mv f * changelog * format * move helper to parallel plugin * d * add world size * clean up * duplicate * activate ddp_sharded and tpu * set nvidia flags * remove unused colab var * use_tpu <-> on_tpu attrs * make some ddp_cpu and clusterplugin tests pass * Ref/accelerator connector (#5742) * final cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * connector cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * trainer cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * accelerator cleanup + missing logic in accelerator connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add missing changes to callbacks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * reflect accelerator changes to lightning module Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * clean cluster envs Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * cleanup plugins Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add broadcasting Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * yapf * remove plugin connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * plugins * manual optimization * update optimizer routing * add rank to torchelastic * fix memory mixed precision * setstate on trainer for pickling in ddp spawn * add predict method * add back commented accelerator code * adapt test for sync_batch_norm to new plugin * fix deprecated tests * fix ddp cpu choice when no num_processes are given * yapf format * skip a memory test that cannot pass anymore * fix pickle error in spawn plugin * x * avoid * x * fix cyclic import in docs build * add support for sharded * update typing * add sharded and sharded_spawn to distributed types * make unwrap model default * refactor LightningShardedDataParallel similar to LightningDistributedDataParallel * update sharded spawn to reflect changes * update sharded to reflect changes * Merge 1.1.5 changes * fix merge * fix merge * yapf isort * fix merge * yapf isort * fix indentation in test * copy over reinit scheduler implementation from dev1.2 * fix apex tracking calls with dev_debugger * reduce diff to dev1.2, clean up * fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu * sort plugin tests legacy/new * fix error handling for amp on cpu * fix merge fix merge fix merge * [Feat] Resolve manual_backward (#5837) * resolve manual_backward * resolve flake8 * update * resolve for ddp_spawn * resolve flake8 * resolve flake8 * resolve flake8 Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * fix tests/accelerator tests on cpu * [BugFix] Resolve manual optimization (#5852) * resolve manual_optimization * update * update Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856) * resovle a bug * Accelerator refactor sharded rpc (#5854) * rpc branch * merge * update handling of rpc * make devices etc. Optional in RPC * set devices etc. later if necessary * remove devices from sequential * make devices optional in rpc * fix import * uncomment everything * fix cluster selection Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * resolve bug * fix assert in rpc test * resolve a test * fix docs compilation * accelerator refactor - fix for sharded parity test (#5866) * fix memory issue with ddp_spawn * x x x x x x x x x * x * Remove DDP2 as this does not apply * Add missing pre optimizer hook to ensure lambda closure is called * fix apex docstring * [accelerator][BugFix] Resolve some test for 1 gpu (#5863) * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * update * resolve flake8 * update * update * update * update * update * all_gather * update * make plugins work, add misconfig for RPC * update * update * remove breaking test * resolve some tests * resolve flake8 * revert to ddp_spawn Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de> * yapf isort * resolve flake8 * fix apex doctests * fix apex doctests 2 * resolve docs * update drone * clean env * update * update * update * update * merge * Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881) * Fix RPC related tests, clean out old API, update for new accelerator API * Move tests out of legacy folder, update paths and names * Update test_remove_1-4.py * Expose properties for tpu cores/gpus/num_gpus * Add root GPU property * Move properties to properties.py * move tests that were previously in drone * Fix root GPU property (#5908) * Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator * Add missing tests back * fix best model path transfer when no checkpoint callback available * Fix setup hook order [wip] (#5858) * Call trainer setup hook before accelerator setup * Add test case * add new test * typo * fix callback order in test Co-authored-by: tchaton <thomas@grid.ai> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * rename ddp sequential -> rpc sequential for special test * revert * fix stupid merge problem * Use property in connector for sampler (#5913) * merge the import conflicts * fix spawning of processes in slurm * [wip] Fix some bugs for TPU [skip ci] (#5878) * fixed for single tpu * fixed spawn * fixed spawn * update * update * wip * resolve bugs * resolve bug * update on comment * removed decorator * resolve comments * set to 4 * update * update * need cleaning * update * update * update * resolve flake8 * resolve bugs * exclude broadcast * resolve bugs * change test * update * update * skip if meet fails * properly raise trace * update * add catch * wrap test * resolve typo * update * typo Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> * resolve some tests * update * fix imports * update * resolve flake8 * update azure pipeline * skip a sharded test on cpu that requires a gpu * resolve tpus * resolve bug * resolve flake8 * update * updat utils * revert permission change on files * suggestions from carlos Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting changes * remove incomplete comment * Update pytorch_lightning/accelerators/__init__.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting change * add types * warn 1.7 ddp manual backward only if ddp kwarg unset * yapf + isort * pep8 unused imports * fix cyclic import in docs * Apply suggestions from code review * typer in accelerator.py * typo * Apply suggestions from code review * formatting * update on comments * update typo * Update pytorch_lightning/trainer/properties.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * update * suggestion from code review * suggestion from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: SeanNaren <sean@grid.ai> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
):
with self.trainer.training_type_plugin.block_backward_sync():
yield None
else:
yield None
def _process_closure_result(self, batch_outputs: list, opt_idx: int) -> list:
opt_closure_result = self._curr_step_result
if opt_closure_result is not None:
[feat] Logging refactor 2/n - train (#4495) * update logging * solve more bugs * replace Mapping by Dict * update on comments * resolve pep8 * Apply suggestions from code review Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * typo * update for coverage * update test * update * Update tests/models/test_hooks.py Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> * Update tests/models/test_hooks.py Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> * update on comments * remove deepcopy * remove useless look for * another small optim * extra optim * remove lastest optim, can be source of bug * resolve bug * add docstring * optimize coverage * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging_tests/test_distributed_logging.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/evaluation_loop.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging/test_logger_connector.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging_tests/test_train_loop_logging_1_0.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * update * update on comments * update parity speed * get it down to 0.65 * update * 0.8 max_dif Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-11-05 22:27:04 +00:00
# cache metrics
self.trainer.logger_connector.cache_training_step_metrics(opt_closure_result)
# check if loss or model weights are nan
if self.trainer.terminate_on_nan:
self._check_finite(opt_closure_result.loss)
# track all the outputs across all steps
batch_opt_idx = opt_idx if len(batch_outputs) > 1 else 0
batch_outputs[batch_opt_idx].append(opt_closure_result.training_step_output_for_epoch_end)
if self.trainer.lightning_module.automatic_optimization:
# track total loss for logging (avoid mem leaks)
self.accumulated_loss.append(opt_closure_result.loss)
self._curr_step_result = None
return batch_outputs
def training_step_and_backward(self, split_batch, batch_idx, opt_idx, optimizer, hiddens):
"""Wrap forward, zero_grad and backward in a closure so second order methods work"""
2020-11-27 18:00:48 +00:00
with self.trainer.profiler.profile("training_step_and_backward"):
# lightning module hook
result = self.training_step(split_batch, batch_idx, opt_idx, hiddens)
self._curr_step_result = result
if not self._skip_backward and self.trainer.lightning_module.automatic_optimization:
is_first_batch_to_accumulate = batch_idx % self.trainer.accumulate_grad_batches == 0
if is_first_batch_to_accumulate:
self.on_before_zero_grad(optimizer)
self.optimizer_zero_grad(batch_idx, optimizer, opt_idx)
2020-11-27 18:00:48 +00:00
# backward pass
if result is not None:
with self.trainer.profiler.profile("backward"):
self.backward(result, optimizer, opt_idx)
# hook - call this hook only
# when gradients have finished to accumulate
if not self.should_accumulate():
self.on_after_backward(result.training_step_output, batch_idx, result.loss)
# check if loss or model weights are nan
if self.trainer.terminate_on_nan:
self._check_finite(result.loss)
else:
self.warning_cache.warn(
"training_step returned None. If this was on purpose, ignore this warning..."
)
if len(self.trainer.optimizers) > 1:
# revert back to previous state
self.trainer.lightning_module.untoggle_optimizer(opt_idx)
return result
def _check_finite(self, loss: torch.Tensor) -> None:
if not torch.isfinite(loss).all():
raise ValueError(f'The loss returned in `training_step` is {loss}.')
model = self.trainer.lightning_module
detect_nan_parameters(model)
def backward(self, result, optimizer, opt_idx, *args, **kwargs):
self.trainer.dev_debugger.track_event("backward_call")
PoC: Accelerator refactor (#5743) * restoring the result from subprocess * fix queue.get() order for results * add missing "block_backward_sync" context manager * add missing "block_backward_sync" context manager * fix sync_batchnorm * fix supported gpu-ids for tuple * fix clip gradients and inf recursion * accelerator selection: added cluster_environment plugin * fix torchelastic test * fix reduce early stopping decision for DDP * fix tests: callbacks, conversion to lightning optimizer * fix lightning optimizer does not pickle * fix setting benchmark and deterministic option * fix slurm amp test * fix prepare_data test and determine node_rank * fix retrieving last path when testing * remove obsolete plugin argument * fix test: test_trainer_config * fix torchscript tests * fix trainer.model access * move properties * fix test_transfer_batch_hook * fix auto_select_gpus * fix omegaconf test * fix test that needs to simulate slurm ddp * add horovod plugin * fix test with named arguments * clean up whitespace * fix datamodules test * remove old accelerators * fix naming * move old plugins * move to plugins * create precision subpackage * create training_type subpackage * fix all new import errors * fix wrong arguments order passed to test * fix LR finder * Added sharded training type and amp plugin * Move clip grad to precision plugin * Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically * Fix import issue, attempting to fix tests * Fix initial test * Reflect hook logic from master, should wrap model after move to device * Optional state consolidation, since master has optimizers not wrapped * change attribute for instance test * reset optimizers optimizers are not used in main process, so state would be wrong. * legacy * imports in accel * legacy2 * trainer imports * fix import errors after rebase * move hook to new setup location * provide unwrapping logic * fix trainer callback system * added ddp2 implementation * fix imports .legacy * move plugins * restore legacy * drop test.py from root * add tpu accelerator and plugins * fixes * fix lightning optimizer merge * reset bugreportmodel * unwrapping * step routing forward * model access * unwrap * opt * integrate distrib_type * sync changes * sync * fixes * add forgotten generators * add missing logic * update * import * missed imports * import fixes * isort * mv f * changelog * format * move helper to parallel plugin * d * add world size * clean up * duplicate * activate ddp_sharded and tpu * set nvidia flags * remove unused colab var * use_tpu <-> on_tpu attrs * make some ddp_cpu and clusterplugin tests pass * Ref/accelerator connector (#5742) * final cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * connector cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * trainer cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * accelerator cleanup + missing logic in accelerator connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add missing changes to callbacks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * reflect accelerator changes to lightning module Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * clean cluster envs Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * cleanup plugins Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add broadcasting Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * yapf * remove plugin connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * plugins * manual optimization * update optimizer routing * add rank to torchelastic * fix memory mixed precision * setstate on trainer for pickling in ddp spawn * add predict method * add back commented accelerator code * adapt test for sync_batch_norm to new plugin * fix deprecated tests * fix ddp cpu choice when no num_processes are given * yapf format * skip a memory test that cannot pass anymore * fix pickle error in spawn plugin * x * avoid * x * fix cyclic import in docs build * add support for sharded * update typing * add sharded and sharded_spawn to distributed types * make unwrap model default * refactor LightningShardedDataParallel similar to LightningDistributedDataParallel * update sharded spawn to reflect changes * update sharded to reflect changes * Merge 1.1.5 changes * fix merge * fix merge * yapf isort * fix merge * yapf isort * fix indentation in test * copy over reinit scheduler implementation from dev1.2 * fix apex tracking calls with dev_debugger * reduce diff to dev1.2, clean up * fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu * sort plugin tests legacy/new * fix error handling for amp on cpu * fix merge fix merge fix merge * [Feat] Resolve manual_backward (#5837) * resolve manual_backward * resolve flake8 * update * resolve for ddp_spawn * resolve flake8 * resolve flake8 * resolve flake8 Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * fix tests/accelerator tests on cpu * [BugFix] Resolve manual optimization (#5852) * resolve manual_optimization * update * update Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856) * resovle a bug * Accelerator refactor sharded rpc (#5854) * rpc branch * merge * update handling of rpc * make devices etc. Optional in RPC * set devices etc. later if necessary * remove devices from sequential * make devices optional in rpc * fix import * uncomment everything * fix cluster selection Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * resolve bug * fix assert in rpc test * resolve a test * fix docs compilation * accelerator refactor - fix for sharded parity test (#5866) * fix memory issue with ddp_spawn * x x x x x x x x x * x * Remove DDP2 as this does not apply * Add missing pre optimizer hook to ensure lambda closure is called * fix apex docstring * [accelerator][BugFix] Resolve some test for 1 gpu (#5863) * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * update * resolve flake8 * update * update * update * update * update * all_gather * update * make plugins work, add misconfig for RPC * update * update * remove breaking test * resolve some tests * resolve flake8 * revert to ddp_spawn Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de> * yapf isort * resolve flake8 * fix apex doctests * fix apex doctests 2 * resolve docs * update drone * clean env * update * update * update * update * merge * Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881) * Fix RPC related tests, clean out old API, update for new accelerator API * Move tests out of legacy folder, update paths and names * Update test_remove_1-4.py * Expose properties for tpu cores/gpus/num_gpus * Add root GPU property * Move properties to properties.py * move tests that were previously in drone * Fix root GPU property (#5908) * Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator * Add missing tests back * fix best model path transfer when no checkpoint callback available * Fix setup hook order [wip] (#5858) * Call trainer setup hook before accelerator setup * Add test case * add new test * typo * fix callback order in test Co-authored-by: tchaton <thomas@grid.ai> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * rename ddp sequential -> rpc sequential for special test * revert * fix stupid merge problem * Use property in connector for sampler (#5913) * merge the import conflicts * fix spawning of processes in slurm * [wip] Fix some bugs for TPU [skip ci] (#5878) * fixed for single tpu * fixed spawn * fixed spawn * update * update * wip * resolve bugs * resolve bug * update on comment * removed decorator * resolve comments * set to 4 * update * update * need cleaning * update * update * update * resolve flake8 * resolve bugs * exclude broadcast * resolve bugs * change test * update * update * skip if meet fails * properly raise trace * update * add catch * wrap test * resolve typo * update * typo Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> * resolve some tests * update * fix imports * update * resolve flake8 * update azure pipeline * skip a sharded test on cpu that requires a gpu * resolve tpus * resolve bug * resolve flake8 * update * updat utils * revert permission change on files * suggestions from carlos Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting changes * remove incomplete comment * Update pytorch_lightning/accelerators/__init__.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting change * add types * warn 1.7 ddp manual backward only if ddp kwarg unset * yapf + isort * pep8 unused imports * fix cyclic import in docs * Apply suggestions from code review * typer in accelerator.py * typo * Apply suggestions from code review * formatting * update on comments * update typo * Update pytorch_lightning/trainer/properties.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * update * suggestion from code review * suggestion from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: SeanNaren <sean@grid.ai> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
should_accumulate = self.should_accumulate()
# backward can be called manually in the training loop
if isinstance(result, torch.Tensor):
self.trainer.accelerator.backward(result, optimizer, opt_idx, should_accumulate, *args, **kwargs)
else:
result.closure_loss = self.trainer.accelerator.backward(
PoC: Accelerator refactor (#5743) * restoring the result from subprocess * fix queue.get() order for results * add missing "block_backward_sync" context manager * add missing "block_backward_sync" context manager * fix sync_batchnorm * fix supported gpu-ids for tuple * fix clip gradients and inf recursion * accelerator selection: added cluster_environment plugin * fix torchelastic test * fix reduce early stopping decision for DDP * fix tests: callbacks, conversion to lightning optimizer * fix lightning optimizer does not pickle * fix setting benchmark and deterministic option * fix slurm amp test * fix prepare_data test and determine node_rank * fix retrieving last path when testing * remove obsolete plugin argument * fix test: test_trainer_config * fix torchscript tests * fix trainer.model access * move properties * fix test_transfer_batch_hook * fix auto_select_gpus * fix omegaconf test * fix test that needs to simulate slurm ddp * add horovod plugin * fix test with named arguments * clean up whitespace * fix datamodules test * remove old accelerators * fix naming * move old plugins * move to plugins * create precision subpackage * create training_type subpackage * fix all new import errors * fix wrong arguments order passed to test * fix LR finder * Added sharded training type and amp plugin * Move clip grad to precision plugin * Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically * Fix import issue, attempting to fix tests * Fix initial test * Reflect hook logic from master, should wrap model after move to device * Optional state consolidation, since master has optimizers not wrapped * change attribute for instance test * reset optimizers optimizers are not used in main process, so state would be wrong. * legacy * imports in accel * legacy2 * trainer imports * fix import errors after rebase * move hook to new setup location * provide unwrapping logic * fix trainer callback system * added ddp2 implementation * fix imports .legacy * move plugins * restore legacy * drop test.py from root * add tpu accelerator and plugins * fixes * fix lightning optimizer merge * reset bugreportmodel * unwrapping * step routing forward * model access * unwrap * opt * integrate distrib_type * sync changes * sync * fixes * add forgotten generators * add missing logic * update * import * missed imports * import fixes * isort * mv f * changelog * format * move helper to parallel plugin * d * add world size * clean up * duplicate * activate ddp_sharded and tpu * set nvidia flags * remove unused colab var * use_tpu <-> on_tpu attrs * make some ddp_cpu and clusterplugin tests pass * Ref/accelerator connector (#5742) * final cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * connector cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * trainer cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * accelerator cleanup + missing logic in accelerator connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add missing changes to callbacks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * reflect accelerator changes to lightning module Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * clean cluster envs Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * cleanup plugins Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add broadcasting Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * yapf * remove plugin connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * plugins * manual optimization * update optimizer routing * add rank to torchelastic * fix memory mixed precision * setstate on trainer for pickling in ddp spawn * add predict method * add back commented accelerator code * adapt test for sync_batch_norm to new plugin * fix deprecated tests * fix ddp cpu choice when no num_processes are given * yapf format * skip a memory test that cannot pass anymore * fix pickle error in spawn plugin * x * avoid * x * fix cyclic import in docs build * add support for sharded * update typing * add sharded and sharded_spawn to distributed types * make unwrap model default * refactor LightningShardedDataParallel similar to LightningDistributedDataParallel * update sharded spawn to reflect changes * update sharded to reflect changes * Merge 1.1.5 changes * fix merge * fix merge * yapf isort * fix merge * yapf isort * fix indentation in test * copy over reinit scheduler implementation from dev1.2 * fix apex tracking calls with dev_debugger * reduce diff to dev1.2, clean up * fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu * sort plugin tests legacy/new * fix error handling for amp on cpu * fix merge fix merge fix merge * [Feat] Resolve manual_backward (#5837) * resolve manual_backward * resolve flake8 * update * resolve for ddp_spawn * resolve flake8 * resolve flake8 * resolve flake8 Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * fix tests/accelerator tests on cpu * [BugFix] Resolve manual optimization (#5852) * resolve manual_optimization * update * update Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856) * resovle a bug * Accelerator refactor sharded rpc (#5854) * rpc branch * merge * update handling of rpc * make devices etc. Optional in RPC * set devices etc. later if necessary * remove devices from sequential * make devices optional in rpc * fix import * uncomment everything * fix cluster selection Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * resolve bug * fix assert in rpc test * resolve a test * fix docs compilation * accelerator refactor - fix for sharded parity test (#5866) * fix memory issue with ddp_spawn * x x x x x x x x x * x * Remove DDP2 as this does not apply * Add missing pre optimizer hook to ensure lambda closure is called * fix apex docstring * [accelerator][BugFix] Resolve some test for 1 gpu (#5863) * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * update * resolve flake8 * update * update * update * update * update * all_gather * update * make plugins work, add misconfig for RPC * update * update * remove breaking test * resolve some tests * resolve flake8 * revert to ddp_spawn Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de> * yapf isort * resolve flake8 * fix apex doctests * fix apex doctests 2 * resolve docs * update drone * clean env * update * update * update * update * merge * Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881) * Fix RPC related tests, clean out old API, update for new accelerator API * Move tests out of legacy folder, update paths and names * Update test_remove_1-4.py * Expose properties for tpu cores/gpus/num_gpus * Add root GPU property * Move properties to properties.py * move tests that were previously in drone * Fix root GPU property (#5908) * Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator * Add missing tests back * fix best model path transfer when no checkpoint callback available * Fix setup hook order [wip] (#5858) * Call trainer setup hook before accelerator setup * Add test case * add new test * typo * fix callback order in test Co-authored-by: tchaton <thomas@grid.ai> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * rename ddp sequential -> rpc sequential for special test * revert * fix stupid merge problem * Use property in connector for sampler (#5913) * merge the import conflicts * fix spawning of processes in slurm * [wip] Fix some bugs for TPU [skip ci] (#5878) * fixed for single tpu * fixed spawn * fixed spawn * update * update * wip * resolve bugs * resolve bug * update on comment * removed decorator * resolve comments * set to 4 * update * update * need cleaning * update * update * update * resolve flake8 * resolve bugs * exclude broadcast * resolve bugs * change test * update * update * skip if meet fails * properly raise trace * update * add catch * wrap test * resolve typo * update * typo Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> * resolve some tests * update * fix imports * update * resolve flake8 * update azure pipeline * skip a sharded test on cpu that requires a gpu * resolve tpus * resolve bug * resolve flake8 * update * updat utils * revert permission change on files * suggestions from carlos Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting changes * remove incomplete comment * Update pytorch_lightning/accelerators/__init__.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting change * add types * warn 1.7 ddp manual backward only if ddp kwarg unset * yapf + isort * pep8 unused imports * fix cyclic import in docs * Apply suggestions from code review * typer in accelerator.py * typo * Apply suggestions from code review * formatting * update on comments * update typo * Update pytorch_lightning/trainer/properties.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * update * suggestion from code review * suggestion from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: SeanNaren <sean@grid.ai> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
result.closure_loss, optimizer, opt_idx, should_accumulate, *args, **kwargs
)
if not self.should_accumulate():
# track gradients
self.track_and_norm_grad(optimizer=optimizer)
def update_train_loop_lr_schedulers(self, monitor_metrics=None):
num_accumulated_batches_reached = self._accumulated_batches_reached()
num_training_batches_reached = self._num_training_batches_reached()
if num_accumulated_batches_reached or num_training_batches_reached:
# update lr
self.trainer.optimizer_connector.update_learning_rates(
interval="step",
monitor_metrics=monitor_metrics,
opt_indices=[opt_idx for opt_idx, _ in self.get_optimizers_iterable()],
)
def increment_accumulated_grad_global_step(self):
num_accumulated_batches_reached = self._accumulated_batches_reached()
num_training_batches_reached = self._num_training_batches_reached()
# progress global step according to grads progress
if num_accumulated_batches_reached or num_training_batches_reached:
self.global_step = self.trainer.accelerator.update_global_step(self.total_batch_idx, self.global_step)
def _accumulated_batches_reached(self):
return (self.batch_idx + 1) % self.trainer.accumulate_grad_batches == 0
def _num_training_batches_reached(self, is_last_batch=False):
return (self.batch_idx + 1) == self.trainer.num_training_batches or is_last_batch
def should_accumulate(self):
# checks if backward or backward + optimizer step (via closure)
accumulation_done = self._accumulated_batches_reached()
is_final_batch = self._num_training_batches_reached()
return not (accumulation_done or is_final_batch)
def _should_check_val_fx(self, batch_idx: int, is_last_batch: bool, on_epoch: bool = False) -> bool:
""" Decide if we should run validation. """
if not self.trainer.enable_validation:
return False
# check if this epoch is eligible to run validation
if (self.trainer.current_epoch + 1) % self.trainer.check_val_every_n_epoch != 0:
return False
# val_check_batch is inf for iterable datasets with no length defined
# TODO: let training/eval loop handle logic around limit_*_batches and val_check_batch
is_val_check_batch = False
if isinstance(self.trainer.limit_train_batches, int) and self.trainer.val_check_batch == float('inf'):
is_val_check_batch = (batch_idx + 1) % self.trainer.limit_train_batches == 0
elif self.trainer.val_check_batch != float('inf'):
is_val_check_batch = (batch_idx + 1) % self.trainer.val_check_batch == 0
# Note: num_training_batches is also inf for iterable datasets with no length defined
epoch_end_val_check = (batch_idx + 1) % self.trainer.num_training_batches == 0
is_last_batch_for_infinite_dataset = is_last_batch and self.trainer.val_check_batch == float("inf")
if on_epoch:
return (
is_val_check_batch and epoch_end_val_check
) or self.trainer.should_stop or is_last_batch_for_infinite_dataset
else:
return is_val_check_batch and not epoch_end_val_check
def build_train_args(self, batch, batch_idx, opt_idx, hiddens):
# enable not needing to add opt_idx to training_step
args = [batch, batch_idx]
lightning_module = self.trainer.lightning_module
if len(self.trainer.optimizers) > 1:
training_step_fx = getattr(lightning_module, "training_step")
has_opt_idx_in_train_step = is_param_in_hook_signature(training_step_fx, "optimizer_idx")
if has_opt_idx_in_train_step:
if not lightning_module.automatic_optimization:
self.warning_cache.warn(
"`training_step` hook signature has changed in v1.3."
" `optimizer_idx` argument has been removed in case of manual optimization. Support for"
" the old signature will be removed in v1.5", DeprecationWarning
)
args.append(opt_idx)
elif not has_opt_idx_in_train_step and lightning_module.automatic_optimization:
raise ValueError(
f"Your LightningModule defines {len(self.trainer.optimizers)} optimizers but"
' `training_step` is missing the `optimizer_idx` argument.'
)
# pass hiddens if using tbptt
if self._truncated_bptt_enabled():
args.append(hiddens)
return args
def _truncated_bptt_enabled(self) -> bool:
""" Temporary tbptt utilities until this flag is fully migrated to the lightning module. """
return self._truncated_bptt_steps() > 0
def _truncated_bptt_steps(self) -> int:
lightning_module = self.trainer.lightning_module
# Give precedence to the LightningModule as the Trainer flag will be removed in v1.5
if lightning_module.truncated_bptt_steps > 0:
return lightning_module.truncated_bptt_steps
return self.trainer.truncated_bptt_steps or 0
def save_loggers_on_train_batch_end(self):
# when loggers should save to disk
[feat] Logging refactor 2/n - train (#4495) * update logging * solve more bugs * replace Mapping by Dict * update on comments * resolve pep8 * Apply suggestions from code review Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * typo * update for coverage * update test * update * Update tests/models/test_hooks.py Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> * Update tests/models/test_hooks.py Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> * update on comments * remove deepcopy * remove useless look for * another small optim * extra optim * remove lastest optim, can be source of bug * resolve bug * add docstring * optimize coverage * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging_tests/test_distributed_logging.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/evaluation_loop.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging/test_logger_connector.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging_tests/test_train_loop_logging_1_0.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * update * update on comments * update parity speed * get it down to 0.65 * update * 0.8 max_dif Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-11-05 22:27:04 +00:00
should_flush_logs = self.trainer.logger_connector.should_flush_logs
if should_flush_logs and self.trainer.is_global_zero and self.trainer.logger is not None:
self.trainer.logger.save()
def prepare_optimizers(self):
# in manual optimization we loop over all optimizers at once
optimizers = self.get_optimizers_iterable()
if not self.trainer.lightning_module.automatic_optimization:
optimizers = [optimizers[0]]
return optimizers
def run_train_split_start(self, split_idx, split_batch, opt_idx, optimizer):
# set split_idx to trainer for tracking
self.trainer.split_idx = split_idx
# make sure only the gradients of the current optimizer's parameters are calculated
# in the training step to prevent dangling gradients in multiple-optimizer setup.
if self.trainer.lightning_module.automatic_optimization and len(self.trainer.optimizers) > 1:
model = self.trainer.lightning_module
model.toggle_optimizer(optimizer, opt_idx)
# use to track metrics internally
[feat] Logging refactor 2/n - train (#4495) * update logging * solve more bugs * replace Mapping by Dict * update on comments * resolve pep8 * Apply suggestions from code review Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * typo * update for coverage * update test * update * Update tests/models/test_hooks.py Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> * Update tests/models/test_hooks.py Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> * update on comments * remove deepcopy * remove useless look for * another small optim * extra optim * remove lastest optim, can be source of bug * resolve bug * add docstring * optimize coverage * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/connectors/logger_connector/epoch_result_store.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging_tests/test_distributed_logging.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/evaluation_loop.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging/test_logger_connector.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/logging_tests/test_train_loop_logging_1_0.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * update * update on comments * update parity speed * get it down to 0.65 * update * 0.8 max_dif Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-11-05 22:27:04 +00:00
self.trainer.logger_connector.on_train_split_start(split_idx, opt_idx, split_batch)
def update_running_loss(self):
accumulated_loss = self.accumulated_loss.mean()
if accumulated_loss is not None:
# calculate running loss for display
self.running_loss.append(self.accumulated_loss.mean() * self.trainer.accumulate_grad_batches)
# reset for next set of accumulated grads
self.accumulated_loss.reset()