lightning/docs/source-app/workflows/share_files_between_compone...

146 lines
3.7 KiB
ReStructuredText
Raw Normal View History

:orphan:
##############################
Share Files Between Components
##############################
.. note:: The contents of this page is still in progress!
**Audience:** Users who want to share files between components.
----
**********************************
Why do I need distributed storage?
**********************************
In a Lightning App some components can be executed on their own hardware. Distributed storage
enables a file saved by a component on one machine to be used by components in other machines (transparently).
If you've asked the question "how do I use the checkpoint from this model to deploy this other thing", you've
needed distributed storage.
----
************
Write a file
************
To write a file, first create a reference to the file with the :class:`~lightning_app.storage.Path` class, then write to it:
.. code:: python
from lightning_app.storage.path import Path
# file reference
boring_file_reference = Path("boring_file.txt")
# write to that file
with open(self.boring_file_reference, "w") as f:
f.write("yolo")
----
**********
Use a file
**********
To use a file, pass the reference to the file:
.. code:: python
f = open(boring_file_reference, "r")
print(f.read())
----
..
********************************
Create a directory - coming soon
********************************
----
******************************
Use a directory - coming soon
***************
TODO
----
*********************************
Example: Share a model checkpoint
*********************************
A common workflow in ML is to use a checkpoint created by another component.
First, define a component that saves a checkpoint:
.. code:: python
import lightning_app as lalit
from lightning_app.storage.path import Path
import torch
import os
class ModelTraining(lit.LightningWork):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.model_checkpoints_path = Path("/checkpoints")
def run(self):
# make fake checkpoints
checkpoint_1 = torch.tensor([0, 1, 2, 3, 4])
checkpoint_2 = torch.tensor([0, 1, 2, 3, 4])
torch.save(checkpoint_1, self.model_checkpoints_path + "checkpoint_1.ckpt")
torch.save(checkpoint_2, self.model_checkpoints_path + "checkpoint_2.ckpt")
Next, define a component that needs the checkpoints:
.. code:: python
class ModelDeploy(lit.LightningWork):
def __init__(self, ckpt_path, *args, **kwargs):
super().__init__()
self.ckpt_path = ckpt_path
def run(self):
ckpts = os.list_dir(self.ckpt_path)
checkpoint_1 = torch.load(ckpts[0])
checkpoint_2 = torch.load(ckpts[1])
Link both components via a parent component:
.. code:: python
class Root(lit.LightningFlow):
def __init__(self):
super().__init__()
self.train = ModelTraining()
self.deploy = ModelDeploy(ckpt_path=self.train.model_checkpoints_path)
def run(self):
self.train.run()
self.deploy.run()
app = lit.LightningApp(Root())
For example, here we save a file on one component and use it in another component:
.. code:: python
from lightning_app.storage.path import Path
class ComponentA(LightningWork):
def __init__(self):
super().__init__()
self.boring_path = Path("boring_file.txt")
def run(self):
# This should be used as a REFERENCE to the file.
self.boring_path = Path("boring_file.txt")
with open(self.boring_path, "w") as f:
f.write(FILE_CONTENT)