2020-06-29 01:36:46 +00:00
|
|
|
import os
|
|
|
|
import pickle
|
|
|
|
import platform
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import cloudpickle
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
import tests.base.develop_utils as tutils
|
|
|
|
from pytorch_lightning import Trainer
|
|
|
|
from pytorch_lightning.callbacks import ModelCheckpoint
|
|
|
|
from pytorch_lightning.loggers import TensorBoardLogger
|
|
|
|
from tests.base import EvalModelTemplate
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('save_top_k', [-1, 0, 1, 2])
|
|
|
|
def test_model_checkpoint_with_non_string_input(tmpdir, save_top_k):
|
2020-07-09 16:11:56 +00:00
|
|
|
"""
|
|
|
|
Test that None in checkpoint callback is valid and that chkp_path is set correctly
|
|
|
|
"""
|
2020-06-29 01:36:46 +00:00
|
|
|
tutils.reset_seed()
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
|
|
|
|
checkpoint = ModelCheckpoint(filepath=None, save_top_k=save_top_k)
|
|
|
|
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
checkpoint_callback=checkpoint,
|
|
|
|
overfit_pct=0.20,
|
|
|
|
max_epochs=(save_top_k + 2),
|
|
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
# These should be different if the dirpath has be overridden
|
|
|
|
assert trainer.ckpt_path != trainer.default_root_dir
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
'logger_version,expected',
|
|
|
|
[(None, 'version_0'), (1, 'version_1'), ('awesome', 'awesome')],
|
|
|
|
)
|
|
|
|
def test_model_checkpoint_path(tmpdir, logger_version, expected):
|
|
|
|
"""Test that "version_" prefix is only added when logger's version is an integer"""
|
|
|
|
tutils.reset_seed()
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
logger = TensorBoardLogger(str(tmpdir), version=logger_version)
|
|
|
|
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
overfit_pct=0.2,
|
|
|
|
max_epochs=5,
|
|
|
|
logger=logger,
|
|
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
ckpt_version = Path(trainer.ckpt_path).parent.name
|
|
|
|
assert ckpt_version == expected
|
|
|
|
|
|
|
|
|
|
|
|
def test_pickling(tmpdir):
|
|
|
|
ckpt = ModelCheckpoint(tmpdir)
|
|
|
|
|
|
|
|
ckpt_pickled = pickle.dumps(ckpt)
|
|
|
|
ckpt_loaded = pickle.loads(ckpt_pickled)
|
|
|
|
assert vars(ckpt) == vars(ckpt_loaded)
|
|
|
|
|
|
|
|
ckpt_pickled = cloudpickle.dumps(ckpt)
|
|
|
|
ckpt_loaded = cloudpickle.loads(ckpt_pickled)
|
|
|
|
assert vars(ckpt) == vars(ckpt_loaded)
|
|
|
|
|
|
|
|
|
|
|
|
class ModelCheckpointTestInvocations(ModelCheckpoint):
|
|
|
|
# this class has to be defined outside the test function, otherwise we get pickle error
|
|
|
|
# due to the way ddp process is launched
|
|
|
|
|
|
|
|
def __init__(self, expected_count, *args, **kwargs):
|
|
|
|
super().__init__(*args, **kwargs)
|
|
|
|
self.count = 0
|
|
|
|
self.expected_count = expected_count
|
|
|
|
|
|
|
|
def _save_model(self, filepath):
|
|
|
|
# make sure we don't save twice
|
|
|
|
assert not os.path.isfile(filepath)
|
|
|
|
self.count += 1
|
|
|
|
super()._save_model(filepath)
|
|
|
|
|
|
|
|
def on_train_end(self, trainer, pl_module):
|
|
|
|
super().on_train_end(trainer, pl_module)
|
|
|
|
# on rank 0 we expect the saved files and on all others no saves
|
|
|
|
assert (trainer.global_rank == 0 and self.count == self.expected_count) \
|
|
|
|
or (trainer.global_rank > 0 and self.count == 0)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows")
|
|
|
|
def test_model_checkpoint_no_extraneous_invocations(tmpdir):
|
|
|
|
"""Test to ensure that the model callback saves the checkpoints only once in distributed mode."""
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
num_epochs = 4
|
|
|
|
model_checkpoint = ModelCheckpointTestInvocations(expected_count=num_epochs, save_top_k=-1)
|
|
|
|
trainer = Trainer(
|
|
|
|
distributed_backend='ddp_cpu',
|
|
|
|
num_processes=2,
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
early_stop_callback=False,
|
|
|
|
checkpoint_callback=model_checkpoint,
|
|
|
|
max_epochs=num_epochs,
|
|
|
|
)
|
|
|
|
result = trainer.fit(model)
|
|
|
|
assert 1 == result
|