lightning/pytorch_lightning/models/trainer.py

622 lines
22 KiB
Python
Raw Normal View History

2019-03-31 01:45:16 +00:00
import torch
import tqdm
import numpy as np
2019-03-31 20:29:50 +00:00
from pytorch_lightning.root_module.memory import get_gpu_memory_map
2019-03-31 01:45:16 +00:00
import traceback
2019-03-31 20:29:50 +00:00
from pytorch_lightning.root_module.model_saving import TrainerIO
2019-03-31 01:45:16 +00:00
from torch.optim.lr_scheduler import MultiStepLR
2019-07-03 19:09:49 +00:00
from pytorch_lightning.pt_overrides.override_data_parallel import LightningDistributedDataParallel
2019-05-14 00:44:25 +00:00
import pdb
2019-07-03 19:09:49 +00:00
import torch.multiprocessing as mp
import torch.distributed as dist
2019-07-08 13:27:16 +00:00
import os
import subprocess
from time import sleep
2019-03-31 01:45:16 +00:00
2019-05-14 00:40:07 +00:00
try:
from apex import amp
APEX_AVAILABLE = True
except ModuleNotFoundError:
APEX_AVAILABLE = False
2019-03-31 01:45:16 +00:00
2019-07-01 22:38:07 +00:00
def reduce_distributed_output(output, nb_gpus):
for k, v in output.items():
# recurse on nested dics
if isinstance(output[k], dict):
output[k] = reduce_distributed_output(output[k], nb_gpus)
# reduce only metrics that have the same nb of gpus
elif output[k].size(0) == nb_gpus:
reduced = torch.mean(output[k])
output[k] = reduced
return output
2019-07-03 20:39:33 +00:00
2019-03-31 01:45:16 +00:00
class Trainer(TrainerIO):
def __init__(self,
experiment,
checkpoint_callback, early_stop_callback,
2019-07-01 22:38:07 +00:00
gradient_clip=0,
2019-03-31 20:29:50 +00:00
cluster=None,
2019-03-31 01:45:16 +00:00
process_position=0,
current_gpu_name=0,
2019-07-03 20:34:49 +00:00
nb_gpu_nodes=None,
2019-07-01 22:38:07 +00:00
gpus=None,
progress_bar=True,
2019-03-31 20:29:50 +00:00
overfit_pct=0.0,
2019-03-31 01:45:16 +00:00
track_grad_norm=-1,
check_val_every_n_epoch=1,
fast_dev_run=False,
2019-03-31 20:29:50 +00:00
accumulate_grad_batches=1,
2019-07-01 22:38:07 +00:00
enable_early_stop=True, max_nb_epochs=1000, min_nb_epochs=1,
2019-03-31 01:45:16 +00:00
train_percent_check=1.0, val_percent_check=1.0, test_percent_check=1.0, val_check_interval=0.95,
2019-07-01 22:38:07 +00:00
log_save_interval=100, add_log_row_interval=10,
2019-03-31 01:45:16 +00:00
lr_scheduler_milestones=None,
2019-05-14 02:02:53 +00:00
use_amp=False,
2019-07-01 22:38:07 +00:00
print_nan_grads=False,
2019-05-16 19:45:56 +00:00
amp_level='O2',
2019-03-31 01:45:16 +00:00
nb_sanity_val_steps=5):
# Transfer params
2019-07-03 20:34:49 +00:00
self.nb_gpu_nodes = nb_gpu_nodes
2019-07-01 22:38:07 +00:00
self.gradient_clip = gradient_clip
2019-03-31 01:45:16 +00:00
self.check_val_every_n_epoch = check_val_every_n_epoch
self.enable_early_stop = enable_early_stop
self.track_grad_norm = track_grad_norm
self.fast_dev_run = fast_dev_run
2019-07-01 22:38:07 +00:00
self.on_gpu = gpus is not None and torch.cuda.is_available()
self.progress_bar = progress_bar
2019-03-31 01:45:16 +00:00
self.experiment = experiment
self.exp_save_path = experiment.get_data_path(experiment.name, experiment.version)
self.cluster = cluster
self.process_position = process_position
self.current_gpu_name = current_gpu_name
self.checkpoint_callback = checkpoint_callback
self.checkpoint_callback.save_function = self.save_checkpoint
self.early_stop = early_stop_callback
self.model = None
self.max_nb_epochs = max_nb_epochs
self.accumulate_grad_batches = accumulate_grad_batches
self.early_stop_callback = early_stop_callback
self.min_nb_epochs = min_nb_epochs
self.nb_sanity_val_steps = nb_sanity_val_steps
self.lr_scheduler_milestones = [] if lr_scheduler_milestones is None else [int(x.strip()) for x in lr_scheduler_milestones.split(',')]
self.lr_schedulers = []
2019-05-16 19:45:56 +00:00
self.amp_level = amp_level
2019-07-01 22:38:07 +00:00
self.print_nan_grads = print_nan_grads
self.data_parallel_device_ids = gpus
self.data_parallel = gpus is not None and len(gpus) > 0
2019-06-25 22:51:41 +00:00
2019-07-03 21:02:30 +00:00
# process info
self.proc_rank = 0
2019-03-31 01:45:16 +00:00
# training state
self.optimizers = None
self.prog_bar = None
self.global_step = 0
self.current_epoch = 0
self.total_batches = 0
# logging
self.log_save_interval = log_save_interval
self.val_check_interval = val_check_interval
self.add_log_row_interval = add_log_row_interval
# dataloaders
self.tng_dataloader = None
self.test_dataloader = None
self.val_dataloader = None
# how much of the data to use
self.__determine_data_use_amount(train_percent_check, val_percent_check, test_percent_check, overfit_pct)
print('gpu available: {}, used: {}'.format(torch.cuda.is_available(), self.on_gpu))
2019-05-14 00:40:07 +00:00
# apex test
self.use_amp = use_amp and APEX_AVAILABLE
2019-05-14 00:41:23 +00:00
if self.use_amp:
print('using 16bit precision')
2019-05-14 00:40:07 +00:00
2019-03-31 01:45:16 +00:00
def __determine_data_use_amount(self, train_percent_check, val_percent_check, test_percent_check, overfit_pct):
"""
Use less data for debugging purposes
"""
self.train_percent_check = train_percent_check
self.val_percent_check = val_percent_check
self.test_percent_check = test_percent_check
if overfit_pct > 0:
self.train_percent_check = overfit_pct
self.val_percent_check = overfit_pct
self.test_percent_check = overfit_pct
def __is_function_implemented(self, f_name):
2019-04-21 18:16:54 +00:00
f_op = getattr(self.model, f_name, None)
2019-03-31 01:45:16 +00:00
return callable(f_op)
@property
def __tng_tqdm_dic(self):
tqdm_dic = {
'tng_loss': '{0:.3f}'.format(self.avg_loss),
'v_nb': '{}'.format(self.experiment.version),
'epoch': '{}'.format(self.current_epoch),
'batch_nb':'{}'.format(self.batch_nb),
}
tqdm_dic.update(self.tqdm_metrics)
2019-07-01 22:38:07 +00:00
if self.on_gpu:
tqdm_dic['gpu'] = '{}'.format(self.current_gpu_name)
2019-03-31 01:45:16 +00:00
return tqdm_dic
2019-07-01 22:38:07 +00:00
def __layout_bookeeping(self, model):
2019-03-31 01:45:16 +00:00
# training bookeeping
self.total_batch_nb = 0
self.running_loss = []
self.avg_loss = 0
self.batch_nb = 0
self.tqdm_metrics = {}
# determine number of training batches
2019-07-01 22:38:07 +00:00
self.nb_tng_batches = model.nb_batches(self.tng_dataloader)
2019-05-14 10:11:16 +00:00
self.nb_tng_batches = int(self.nb_tng_batches * self.train_percent_check)
2019-03-31 01:45:16 +00:00
# determine number of validation batches
2019-07-01 22:38:07 +00:00
self.nb_val_batches = model.nb_batches(self.val_dataloader)
2019-05-14 10:11:16 +00:00
self.nb_val_batches = int(self.nb_val_batches * self.val_percent_check)
self.nb_val_batches = max(1, self.nb_val_batches)
self.nb_val_batches = self.nb_val_batches
2019-03-31 01:45:16 +00:00
# determine number of test batches
2019-07-01 22:38:07 +00:00
self.nb_test_batches = model.nb_batches(self.test_dataloader)
2019-05-14 10:11:16 +00:00
self.nb_test_batches = int(self.nb_test_batches * self.test_percent_check)
2019-03-31 01:45:16 +00:00
# determine when to check validation
2019-05-14 10:11:16 +00:00
self.val_check_batch = int(self.nb_tng_batches * self.val_check_interval)
2019-03-31 01:45:16 +00:00
def __add_tqdm_metrics(self, metrics):
for k, v in metrics.items():
2019-07-01 22:38:07 +00:00
if type(v) is torch.Tensor:
v = v.item()
2019-03-31 01:45:16 +00:00
self.tqdm_metrics[k] = v
def validate(self, model, dataloader, max_batches):
"""
Run validation code
:param model: PT model
:param dataloader: PT dataloader
:param max_batches: Scalar
:return:
"""
print('validating...')
# enable eval mode
model.zero_grad()
model.eval()
2019-07-01 22:38:07 +00:00
model.from_lightning = True
2019-03-31 01:45:16 +00:00
# disable gradients to save memory
torch.set_grad_enabled(False)
# bookkeeping
outputs = []
# run training
2019-05-14 10:36:26 +00:00
for batch_i, data_batch in enumerate(dataloader):
2019-03-31 01:45:16 +00:00
if data_batch is None:
continue
# stop short when on fast dev run
2019-05-14 10:40:11 +00:00
if max_batches is not None and batch_i >= max_batches:
2019-03-31 01:45:16 +00:00
break
# -----------------
# RUN VALIDATION STEP
# -----------------
2019-07-03 20:51:32 +00:00
if self.data_parallel:
output = model(data_batch, batch_i)
# output = reduce_distributed_output(output, len(self.data_parallel_device_ids))
else:
output = model.validation_step(data_batch, batch_i)
2019-07-01 22:38:07 +00:00
2019-03-31 01:45:16 +00:00
outputs.append(output)
# batch done
2019-07-01 22:38:07 +00:00
if self.progress_bar and self.prog_bar is not None:
2019-03-31 01:45:16 +00:00
self.prog_bar.update(1)
# give model a chance to do something with the outputs
2019-07-01 22:38:07 +00:00
if self.data_parallel:
val_results = model.module.validation_end(outputs)
else:
val_results = model.validation_end(outputs)
2019-03-31 01:45:16 +00:00
# enable train mode again
model.train()
# enable gradients to save memory
torch.set_grad_enabled(True)
2019-07-01 22:38:07 +00:00
2019-03-31 01:45:16 +00:00
return val_results
def __get_dataloaders(self, model):
"""
Dataloaders are provided by the model
:param model:
:return:
"""
self.tng_dataloader = model.tng_dataloader
self.test_dataloader = model.test_dataloader
self.val_dataloader = model.val_dataloader
# -----------------------------
# MODEL TRAINING
# -----------------------------
def fit(self, model):
2019-07-01 22:38:07 +00:00
2019-03-31 01:45:16 +00:00
# transfer data loaders from model
self.__get_dataloaders(model)
# init training constants
2019-07-01 22:38:07 +00:00
self.__layout_bookeeping(model)
2019-03-31 01:45:16 +00:00
# CHOOSE OPTIMIZER
# filter out the weights that were done on gpu so we can load on good old cpus
self.optimizers = model.configure_optimizers()
2019-05-14 01:52:02 +00:00
if self.use_amp:
# An example
2019-07-01 22:38:07 +00:00
model, optimizer = amp.initialize(
model, self.optimizers[0], opt_level=self.amp_level,
2019-05-14 01:52:02 +00:00
)
self.optimizers[0] = optimizer
model.trainer = self
2019-05-14 00:40:07 +00:00
2019-03-31 01:45:16 +00:00
# add lr schedulers
if self.lr_scheduler_milestones is not None:
for optimizer in self.optimizers:
scheduler = MultiStepLR(optimizer, self.lr_scheduler_milestones)
self.lr_schedulers.append(scheduler)
# print model summary
model.summarize()
2019-07-03 19:09:49 +00:00
# when GPU is called, spawn off a single worker for each gpu
2019-03-31 01:45:16 +00:00
if self.on_gpu:
2019-07-03 19:09:49 +00:00
rank = 0
2019-07-03 20:17:56 +00:00
self.experiment = self.experiment.get_meta_copy()
2019-07-03 20:24:10 +00:00
mp.spawn(self.dp_train, nprocs=len(self.data_parallel_device_ids), args=(rank, model))
2019-07-03 19:09:49 +00:00
else:
self.__run_pretrain_routine(model)
2019-07-03 20:22:43 +00:00
def dp_train(self, gpu_nb, proc_rank, model):
2019-07-03 19:09:49 +00:00
"""
Entry point into a DP thread
:param gpu_nb:
:param model:
:param cluster_obj:
:return:
"""
2019-07-03 20:29:10 +00:00
# recover original exp before went into process
self.experiment = self.experiment.get_non_ddp_exp()
2019-07-03 20:17:56 +00:00
2019-07-03 22:18:29 +00:00
# show progbar only on prog_rank 0
self.prog_bar = self.prog_bar and proc_rank == 0
2019-07-03 19:09:49 +00:00
# configure server
2019-07-03 21:02:30 +00:00
self.proc_rank = proc_rank * len(self.data_parallel_device_ids) + gpu_nb
2019-07-03 20:34:49 +00:00
world_size = self.nb_gpu_nodes * len(self.data_parallel_device_ids)
2019-07-08 13:27:16 +00:00
ip = self.__get_root_node_ip(self.proc_rank, self.nb_gpu_nodes, self.exp_save_path)
2019-07-03 21:02:30 +00:00
dist.init_process_group("nccl", init_method=f'tcp://{ip}:12001', rank=self.proc_rank, world_size=world_size)
2019-07-08 13:27:16 +00:00
print(f"GPU: {gpu_nb} - Rank: {self.proc_rank}")
2019-07-03 19:09:49 +00:00
# copy model to each gpu
2019-07-03 20:29:10 +00:00
print('starting DDP')
2019-07-03 19:09:49 +00:00
torch.cuda.set_device(gpu_nb)
model.cuda(gpu_nb)
model = LightningDistributedDataParallel(model, device_ids=[gpu_nb])
# continue training routine
2019-07-03 20:29:10 +00:00
print('running pretrain')
2019-07-03 19:09:49 +00:00
self.__run_pretrain_routine(model)
2019-07-08 13:27:16 +00:00
def __get_root_node_ip(self, proc_rank, nb_gpu_nodes, ip_file_dir):
# on one node we use localhost
# if nb_gpu_nodes == 1:
# return '127.0.0.1'
# on multi-node, every node rank > 0 waits until rank 0
# saves the ip to disk
2019-07-08 13:29:02 +00:00
print(ip_file_dir)
2019-07-08 13:27:16 +00:00
ip_file = os.path.join(ip_file_dir, '.ip_meta')
if proc_rank == 0:
# get the proc 0 IP
root_ip = subprocess.run(['hostname', '-I'], stdout=subprocess.PIPE).stdout.decode('utf-8')
root_ip = root_ip.split(' ')[0]
# save the ip to the file
with open(file=ip_file, mode='w') as f:
f.write(root_ip)
return root_ip
else:
# wait up to 120 seconds until proc 0 writes
for i in range(0, 120):
sleep(1.0)
if os.path.exists(ip_file):
ip = open(file=ip_file, mode='r')
return ip
2019-07-03 19:09:49 +00:00
def __run_pretrain_routine(self, model):
"""
Sanity check a few things before starting actual training
:param model:
:return:
"""
2019-07-03 20:17:56 +00:00
# give model convenience properties
model.trainer = self
model.experiment = self.experiment
2019-03-31 01:45:16 +00:00
# run tiny validation to make sure program won't crash during val
_ = self.validate(model, self.val_dataloader, max_batches=self.nb_sanity_val_steps)
# save exp to get started
2019-07-03 21:03:10 +00:00
if self.proc_rank == 0:
2019-07-03 21:02:30 +00:00
self.experiment.save()
2019-03-31 01:45:16 +00:00
# enable cluster checkpointing
2019-03-31 20:29:50 +00:00
if self.cluster is not None:
self.enable_auto_hpc_walltime_manager()
2019-03-31 01:45:16 +00:00
# ---------------------------
# CORE TRAINING LOOP
# ---------------------------
2019-07-01 22:38:07 +00:00
self.model = model
2019-03-31 01:45:16 +00:00
self.__train()
def __train(self):
# run all epochs
for epoch_nb in range(self.current_epoch, self.max_nb_epochs):
# update the lr scheduler
for lr_scheduler in self.lr_schedulers:
lr_scheduler.step()
2019-07-01 22:38:07 +00:00
model = self.model.module if self.data_parallel else self.model
model.current_epoch = epoch_nb
2019-03-31 01:45:16 +00:00
# hook
if self.__is_function_implemented('on_epoch_start'):
2019-07-01 22:38:07 +00:00
model = self.model.module if self.data_parallel else self.model
model.on_epoch_start()
2019-03-31 01:45:16 +00:00
self.current_epoch = epoch_nb
self.total_batches = self.nb_tng_batches + self.nb_val_batches
self.batch_loss_value = 0 # accumulated grads
# init progbar when requested
2019-07-03 22:18:29 +00:00
if self.progress_bar :
2019-03-31 01:45:16 +00:00
self.prog_bar = tqdm.tqdm(range(self.total_batches), position=self.process_position)
for batch_nb, data_batch in enumerate(self.tng_dataloader):
self.batch_nb = batch_nb
self.global_step += 1
2019-07-01 22:38:07 +00:00
model = self.model.module if self.data_parallel else self.model
model.global_step = self.global_step
2019-03-31 01:45:16 +00:00
# stop when the flag is changed or we've gone past the amount requested in the batches
self.total_batch_nb += 1
met_batch_limit = batch_nb > self.nb_tng_batches
if met_batch_limit:
break
# ---------------
# RUN TRAIN STEP
# ---------------
2019-05-14 10:36:26 +00:00
batch_result = self.__run_tng_batch(data_batch, batch_nb)
2019-04-23 12:46:20 +00:00
early_stop_epoch = batch_result == -1
2019-03-31 01:45:16 +00:00
# ---------------
# RUN VAL STEP
# ---------------
is_val_check_batch = (batch_nb + 1) % self.val_check_batch == 0
2019-04-23 12:46:20 +00:00
if self.fast_dev_run or is_val_check_batch or early_stop_epoch:
2019-03-31 01:45:16 +00:00
self.__run_validation()
# when batch should be saved
2019-04-23 15:12:01 +00:00
if (batch_nb + 1) % self.log_save_interval == 0 or early_stop_epoch:
2019-07-03 21:02:30 +00:00
if self.proc_rank == 0:
self.experiment.save()
2019-03-31 01:45:16 +00:00
# when metrics should be logged
2019-04-23 15:12:01 +00:00
if batch_nb % self.add_log_row_interval == 0 or early_stop_epoch:
2019-03-31 01:45:16 +00:00
# count items in memory
# nb_params, nb_tensors = count_mem_items()
2019-07-01 22:38:07 +00:00
if self.data_parallel:
metrics = self.model.module.update_tng_log_metrics(self.__tng_tqdm_dic)
else:
metrics = self.model.update_tng_log_metrics(self.__tng_tqdm_dic)
2019-03-31 01:45:16 +00:00
# add gpu memory
if self.on_gpu:
mem_map = get_gpu_memory_map()
metrics.update(mem_map)
# add norms
if self.track_grad_norm > 0:
2019-07-01 22:38:07 +00:00
model = self.model.module if self.data_parallel else self.model
grad_norm_dic = model.grad_norm(self.track_grad_norm)
2019-03-31 01:45:16 +00:00
metrics.update(grad_norm_dic)
# log metrics
2019-07-01 22:38:07 +00:00
scalar_metrics = self.__metrics_to_scalars(metrics, blacklist=self.__log_vals_blacklist())
2019-07-03 21:02:30 +00:00
if self.proc_rank == 0:
self.experiment.log(scalar_metrics, global_step=self.global_step)
self.experiment.save()
2019-03-31 01:45:16 +00:00
# hook
if self.__is_function_implemented('on_batch_end'):
2019-07-01 22:38:07 +00:00
model = self.model.module if self.data_parallel else self.model
model.on_batch_end()
2019-03-31 01:45:16 +00:00
2019-04-23 12:57:58 +00:00
# end epoch early
2019-04-23 12:46:20 +00:00
if early_stop_epoch:
break
2019-03-31 01:45:16 +00:00
# hook
if self.__is_function_implemented('on_epoch_end'):
2019-07-01 22:38:07 +00:00
model = self.model.module if self.data_parallel else self.model
model.on_epoch_end()
2019-03-31 01:45:16 +00:00
# early stopping
if self.enable_early_stop:
should_stop = self.early_stop_callback.on_epoch_end(epoch=epoch_nb, logs=self.__tng_tqdm_dic)
met_min_epochs = epoch_nb > self.min_nb_epochs
# stop training
stop = should_stop and met_min_epochs
if stop:
return
2019-07-01 22:38:07 +00:00
def __metrics_to_scalars(self, metrics, blacklist=[]):
new_metrics = {}
for k, v in metrics.items():
if type(v) is torch.Tensor:
v = v.item()
if type(v) is dict:
v = self.__metrics_to_scalars(v)
if k not in blacklist:
new_metrics[k] = float(v)
return new_metrics
def __log_vals_blacklist(self):
"""avoid logging some vals lightning uses to maintain state"""
blacklist = {'batch_nb', 'v_nb', 'epoch', 'gpu'}
return blacklist
2019-04-23 12:57:58 +00:00
2019-05-14 10:36:26 +00:00
def __run_tng_batch(self, data_batch, batch_nb):
2019-03-31 01:45:16 +00:00
if data_batch is None:
2019-04-23 12:27:27 +00:00
return 0
2019-03-31 01:45:16 +00:00
# hook
if self.__is_function_implemented('on_batch_start'):
2019-07-01 22:38:07 +00:00
model = self.model.module if self.data_parallel else self.model
response = model.on_batch_start(data_batch)
if response == -1:
2019-04-23 12:26:48 +00:00
return -1
2019-03-31 01:45:16 +00:00
2019-07-01 22:38:07 +00:00
if self.progress_bar:
2019-03-31 01:45:16 +00:00
self.prog_bar.update(1)
# forward pass
# return a scalar value and a dic with tqdm metrics
2019-07-03 20:51:32 +00:00
if self.data_parallel:
output = self.model(data_batch, batch_nb)
# output = reduce_distributed_output(output, len(self.data_parallel_device_ids))
else:
output = self.model.training_step(data_batch, batch_nb)
2019-07-01 22:38:07 +00:00
model_specific_tqdm_metrics_dic = output['tqdm_metrics']
loss = output['loss']
2019-03-31 01:45:16 +00:00
self.__add_tqdm_metrics(model_specific_tqdm_metrics_dic)
# backward pass
2019-05-14 00:40:07 +00:00
if self.use_amp:
for optimizer in self.optimizers:
2019-05-14 01:52:02 +00:00
with amp.scale_loss(loss, optimizer) as scaled_loss:
2019-05-16 19:55:21 +00:00
scaled_loss.backward()
2019-05-14 00:40:07 +00:00
else:
loss.backward()
2019-07-01 22:38:07 +00:00
if self.print_nan_grads:
model = self.model.module if self.data_parallel else self.model
for param in model.parameters():
2019-05-16 20:01:15 +00:00
print(param.grad.float().sum())
2019-05-16 19:58:06 +00:00
2019-03-31 01:45:16 +00:00
self.batch_loss_value += loss.item()
# gradient update with accumulated gradients
if (self.batch_nb + 1) % self.accumulate_grad_batches == 0:
2019-07-01 22:38:07 +00:00
# clip gradients
if self.gradient_clip > 0:
model = self.model.module if self.data_parallel else self.model
torch.nn.utils.clip_grad_norm(model.parameters(), self.gradient_clip)
2019-03-31 01:45:16 +00:00
# update gradients across all optimizers
for optimizer in self.optimizers:
optimizer.step()
# clear gradients
optimizer.zero_grad()
# queuing loss across batches blows it up proportionally... divide out the number accumulated
self.batch_loss_value = self.batch_loss_value / self.accumulate_grad_batches
# track loss
self.running_loss.append(self.batch_loss_value)
self.batch_loss_value = 0
self.avg_loss = np.mean(self.running_loss[-100:])
# update progbar
2019-07-01 22:38:07 +00:00
if self.progress_bar:
2019-03-31 01:45:16 +00:00
# add model specific metrics
tqdm_metrics = self.__tng_tqdm_dic
self.prog_bar.set_postfix(**tqdm_metrics)
# activate batch end hook
if self.__is_function_implemented('on_batch_end'):
self.model.on_batch_end()
2019-04-23 12:26:48 +00:00
return 0
2019-03-31 01:45:16 +00:00
def __run_validation(self):
# decide if can check epochs
can_check_epoch = (self.current_epoch + 1) % self.check_val_every_n_epoch == 0
if self.fast_dev_run:
print('skipping to check performance bc of --fast_dev_run')
elif not can_check_epoch:
return
try:
# hook
if self.__is_function_implemented('on_pre_performance_check'):
self.model.on_pre_performance_check()
# use full val set on end of epoch
# use a small portion otherwise
max_batches = None if not self.fast_dev_run else 1
model_specific_tqdm_metrics_dic = self.validate(
self.model,
self.val_dataloader,
max_batches
)
self.__add_tqdm_metrics(model_specific_tqdm_metrics_dic)
# hook
if self.__is_function_implemented('on_post_performance_check'):
self.model.on_post_performance_check()
except Exception as e:
print(e)
print(traceback.print_exc())
2019-07-01 22:38:07 +00:00
if self.progress_bar:
2019-03-31 01:45:16 +00:00
# add model specific metrics
tqdm_metrics = self.__tng_tqdm_dic
self.prog_bar.set_postfix(**tqdm_metrics)
# model checkpointing
print('save callback...')
2019-07-03 22:14:34 +00:00
if self.proc_rank == 0:
self.checkpoint_callback.on_epoch_end(epoch=self.current_epoch, logs=self.__tng_tqdm_dic)