2020-04-02 15:48:53 +00:00
|
|
|
from abc import ABC
|
|
|
|
from typing import List, Tuple
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from torch import optim
|
|
|
|
from torch.optim.optimizer import Optimizer
|
|
|
|
|
|
|
|
from pytorch_lightning.core.lightning import LightningModule
|
2020-04-09 18:05:46 +00:00
|
|
|
from pytorch_lightning.utilities import rank_zero_warn
|
2020-04-02 15:48:53 +00:00
|
|
|
|
|
|
|
|
|
|
|
class TrainerOptimizersMixin(ABC):
|
|
|
|
|
|
|
|
def init_optimizers(
|
|
|
|
self,
|
|
|
|
model: LightningModule
|
|
|
|
) -> Tuple[List, List, List]:
|
|
|
|
optim_conf = model.configure_optimizers()
|
|
|
|
|
|
|
|
if optim_conf is None:
|
2020-04-09 18:05:46 +00:00
|
|
|
rank_zero_warn('`LightningModule.configure_optimizers` returned `None`, '
|
|
|
|
'this fit will run with no optimizer', UserWarning)
|
2020-04-02 15:48:53 +00:00
|
|
|
optim_conf = _MockOptimizer()
|
|
|
|
|
|
|
|
# single output, single optimizer
|
|
|
|
if isinstance(optim_conf, Optimizer):
|
|
|
|
return [optim_conf], [], []
|
|
|
|
|
|
|
|
# two lists, optimizer + lr schedulers
|
|
|
|
elif isinstance(optim_conf, (list, tuple)) and len(optim_conf) == 2 \
|
|
|
|
and isinstance(optim_conf[0], list):
|
|
|
|
optimizers, lr_schedulers = optim_conf
|
|
|
|
lr_schedulers = self.configure_schedulers(lr_schedulers)
|
|
|
|
return optimizers, lr_schedulers, []
|
|
|
|
|
|
|
|
# single dictionary
|
|
|
|
elif isinstance(optim_conf, dict):
|
|
|
|
optimizer = optim_conf["optimizer"]
|
|
|
|
lr_scheduler = optim_conf.get("lr_scheduler", [])
|
|
|
|
if lr_scheduler:
|
|
|
|
lr_schedulers = self.configure_schedulers([lr_scheduler])
|
|
|
|
return [optimizer], lr_schedulers, []
|
|
|
|
|
|
|
|
# multiple dictionaries
|
|
|
|
elif isinstance(optim_conf, (list, tuple)) and isinstance(optim_conf[0], dict):
|
|
|
|
optimizers = [opt_dict["optimizer"] for opt_dict in optim_conf]
|
|
|
|
# take only lr wif exists and ot they are defined - not None
|
|
|
|
lr_schedulers = [
|
|
|
|
opt_dict["lr_scheduler"] for opt_dict in optim_conf if opt_dict.get("lr_scheduler")
|
|
|
|
]
|
|
|
|
# take only freq wif exists and ot they are defined - not None
|
|
|
|
optimizer_frequencies = [
|
2020-04-07 13:09:23 +00:00
|
|
|
opt_dict["frequency"] for opt_dict in optim_conf if opt_dict.get("frequency") is not None
|
2020-04-02 15:48:53 +00:00
|
|
|
]
|
|
|
|
|
|
|
|
# clean scheduler list
|
|
|
|
if lr_schedulers:
|
|
|
|
lr_schedulers = self.configure_schedulers(lr_schedulers)
|
|
|
|
# assert that if frequencies are present, they are given for all optimizers
|
|
|
|
if optimizer_frequencies and len(optimizer_frequencies) != len(optimizers):
|
|
|
|
raise ValueError("A frequency must be given to each optimizer.")
|
|
|
|
return optimizers, lr_schedulers, optimizer_frequencies
|
|
|
|
|
|
|
|
# single list or tuple, multiple optimizer
|
|
|
|
elif isinstance(optim_conf, (list, tuple)):
|
|
|
|
return list(optim_conf), [], []
|
|
|
|
|
|
|
|
# unknown configuration
|
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
'Unknown configuration for model optimizers.'
|
|
|
|
' Output from `model.configure_optimizers()` should either be:'
|
|
|
|
' * single output, single `torch.optim.Optimizer`'
|
|
|
|
' * single output, list of `torch.optim.Optimizer`'
|
|
|
|
' * single output, a dictionary with `optimizer` key (`torch.optim.Optimizer`)'
|
|
|
|
' and an optional `lr_scheduler` key (`torch.optim.lr_scheduler`)'
|
|
|
|
' * two outputs, first being a list of `torch.optim.Optimizer` second being'
|
|
|
|
' a list of `torch.optim.lr_scheduler`'
|
|
|
|
' * multiple outputs, dictionaries as described with an optional `frequency` key (int)')
|
|
|
|
|
|
|
|
def configure_schedulers(self, schedulers: list):
|
|
|
|
# Convert each scheduler into dict sturcture with relevant information
|
|
|
|
lr_schedulers = []
|
|
|
|
default_config = {'interval': 'epoch', # default every epoch
|
|
|
|
'frequency': 1, # default every epoch/batch
|
|
|
|
'reduce_on_plateau': False, # most often not ReduceLROnPlateau scheduler
|
|
|
|
'monitor': 'val_loss'} # default value to monitor for ReduceLROnPlateau
|
|
|
|
for scheduler in schedulers:
|
|
|
|
if isinstance(scheduler, dict):
|
|
|
|
if 'scheduler' not in scheduler:
|
|
|
|
raise ValueError(f'Lr scheduler should have key `scheduler`',
|
|
|
|
' with item being a lr scheduler')
|
|
|
|
scheduler['reduce_on_plateau'] = isinstance(
|
|
|
|
scheduler['scheduler'], optim.lr_scheduler.ReduceLROnPlateau)
|
|
|
|
|
|
|
|
lr_schedulers.append({**default_config, **scheduler})
|
|
|
|
|
|
|
|
elif isinstance(scheduler, optim.lr_scheduler.ReduceLROnPlateau):
|
|
|
|
lr_schedulers.append({**default_config, 'scheduler': scheduler,
|
|
|
|
'reduce_on_plateau': True})
|
|
|
|
|
|
|
|
elif isinstance(scheduler, optim.lr_scheduler._LRScheduler):
|
|
|
|
lr_schedulers.append({**default_config, 'scheduler': scheduler})
|
|
|
|
else:
|
|
|
|
raise ValueError(f'Input {scheduler} to lr schedulers '
|
|
|
|
'is a invalid input.')
|
|
|
|
return lr_schedulers
|
|
|
|
|
|
|
|
|
|
|
|
class _MockOptimizer(Optimizer):
|
|
|
|
"""The `_MockOptimizer` will be used inplace of an optimizer in the event that `None`
|
|
|
|
is returned from `configure_optimizers`.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__([torch.zeros(1)], {})
|
|
|
|
|
|
|
|
def add_param_group(self, param_group):
|
|
|
|
pass # Do Nothing
|
|
|
|
|
|
|
|
def load_state_dict(self, state_dict):
|
|
|
|
pass # Do Nothing
|
|
|
|
|
|
|
|
def state_dict(self):
|
|
|
|
return {} # Return Empty
|
|
|
|
|
|
|
|
def step(self, closure=None):
|
|
|
|
if closure is not None:
|
|
|
|
closure()
|
|
|
|
|
|
|
|
def zero_grad(self):
|
|
|
|
pass # Do Nothing
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
return 'No Optimizer'
|