2020-01-14 03:20:01 +00:00
|
|
|
|
"""
|
|
|
|
|
Log using `neptune <https://www.neptune.ml>`_
|
|
|
|
|
|
|
|
|
|
Neptune logger can be used in the online mode or offline (silent) mode.
|
|
|
|
|
To log experiment data in online mode, NeptuneLogger requries an API key:
|
|
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
|
|
from pytorch_lightning.logging import NeptuneLogger
|
|
|
|
|
# arguments made to NeptuneLogger are passed on to the neptune.experiments.Experiment class
|
|
|
|
|
|
|
|
|
|
neptune_logger = NeptuneLogger(
|
|
|
|
|
api_key=os.environ["NEPTUNE_API_TOKEN"],
|
|
|
|
|
project_name="USER_NAME/PROJECT_NAME",
|
|
|
|
|
experiment_name="default", # Optional,
|
|
|
|
|
params={"max_epochs": 10}, # Optional,
|
|
|
|
|
tags=["pytorch-lightning","mlp"] # Optional,
|
|
|
|
|
)
|
|
|
|
|
trainer = Trainer(max_epochs=10, logger=neptune_logger)
|
|
|
|
|
|
|
|
|
|
Use the logger anywhere in you LightningModule as follows:
|
|
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
|
|
def train_step(...):
|
|
|
|
|
# example
|
|
|
|
|
self.logger.experiment.log_metric("acc_train", acc_train) # log metrics
|
|
|
|
|
self.logger.experiment.log_image("worse_predictions", prediction_image) # log images
|
|
|
|
|
self.logger.experiment.log_artifact("model_checkpoint.pt", prediction_image) # log model checkpoint
|
|
|
|
|
self.logger.experiment.whatever_neptune_supports(...)
|
|
|
|
|
|
|
|
|
|
def any_lightning_module_function_or_hook(...):
|
|
|
|
|
self.logger.experiment.log_metric("acc_train", acc_train) # log metrics
|
|
|
|
|
self.logger.experiment.log_image("worse_predictions", prediction_image) # log images
|
|
|
|
|
self.logger.experiment.log_artifact("model_checkpoint.pt", prediction_image) # log model checkpoint
|
|
|
|
|
self.logger.experiment.whatever_neptune_supports(...)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
from logging import getLogger
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
import neptune
|
|
|
|
|
except ImportError:
|
|
|
|
|
raise ImportError('Missing neptune package. Run `pip install neptune-client`')
|
|
|
|
|
|
|
|
|
|
from torch import is_tensor
|
|
|
|
|
|
|
|
|
|
# from .base import LightningLoggerBase, rank_zero_only
|
|
|
|
|
from pytorch_lightning.logging.base import LightningLoggerBase, rank_zero_only
|
|
|
|
|
|
|
|
|
|
logger = getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class NeptuneLogger(LightningLoggerBase):
|
|
|
|
|
def __init__(self, api_key=None, project_name=None, offline_mode=False,
|
|
|
|
|
experiment_name=None, upload_source_files=None,
|
|
|
|
|
params=None, properties=None, tags=None, **kwargs):
|
2020-01-17 11:03:31 +00:00
|
|
|
|
r"""
|
|
|
|
|
|
|
|
|
|
Initialize a neptune.ml logger.
|
|
|
|
|
|
|
|
|
|
.. note:: Requires either an API Key (online mode) or a local directory path (offline mode)
|
|
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
|
|
# ONLINE MODE
|
|
|
|
|
from pytorch_lightning.logging import NeptuneLogger
|
|
|
|
|
# arguments made to NeptuneLogger are passed on to the neptune.experiments.Experiment class
|
|
|
|
|
|
|
|
|
|
neptune_logger = NeptuneLogger(
|
|
|
|
|
api_key=os.environ["NEPTUNE_API_TOKEN"],
|
|
|
|
|
project_name="USER_NAME/PROJECT_NAME",
|
|
|
|
|
experiment_name="default", # Optional,
|
|
|
|
|
params={"max_epochs": 10}, # Optional,
|
|
|
|
|
tags=["pytorch-lightning","mlp"] # Optional,
|
|
|
|
|
)
|
|
|
|
|
trainer = Trainer(max_epochs=10, logger=neptune_logger)
|
|
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
|
|
# OFFLINE MODE
|
|
|
|
|
from pytorch_lightning.logging import NeptuneLogger
|
|
|
|
|
# arguments made to NeptuneLogger are passed on to the neptune.experiments.Experiment class
|
|
|
|
|
|
|
|
|
|
neptune_logger = NeptuneLogger(
|
|
|
|
|
project_name="USER_NAME/PROJECT_NAME",
|
|
|
|
|
experiment_name="default", # Optional,
|
|
|
|
|
params={"max_epochs": 10}, # Optional,
|
|
|
|
|
tags=["pytorch-lightning","mlp"] # Optional,
|
|
|
|
|
)
|
|
|
|
|
trainer = Trainer(max_epochs=10, logger=neptune_logger)
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
api_key (str | None): Required in online mode. Neputne API token, found on https://neptune.ml.
|
|
|
|
|
Read how to get your API key
|
|
|
|
|
https://docs.neptune.ml/python-api/tutorials/get-started.html#copy-api-token.
|
|
|
|
|
project_name (str): Required in online mode. Qualified name of a project in a form of
|
|
|
|
|
"namespace/project_name" for example "tom/minst-classification".
|
|
|
|
|
If None, the value of NEPTUNE_PROJECT environment variable will be taken.
|
|
|
|
|
You need to create the project in https://neptune.ml first.
|
|
|
|
|
offline_mode (bool): Optional default False. If offline_mode=True no logs will be send to neptune.
|
|
|
|
|
Usually used for debug purposes.
|
|
|
|
|
experiment_name (str|None): Optional. Editable name of the experiment.
|
|
|
|
|
Name is displayed in the experiment’s Details (Metadata section) and in experiments view as a column.
|
|
|
|
|
upload_source_files (list|None): Optional. List of source files to be uploaded.
|
|
|
|
|
Must be list of str or single str. Uploaded sources are displayed in the experiment’s Source code tab.
|
|
|
|
|
If None is passed, Python file from which experiment was created will be uploaded.
|
|
|
|
|
Pass empty list ([]) to upload no files. Unix style pathname pattern expansion is supported.
|
|
|
|
|
For example, you can pass '*.py' to upload all python source files from the current directory.
|
|
|
|
|
For recursion lookup use '**/*.py' (for Python 3.5 and later). For more information see glob library.
|
|
|
|
|
params (dict|None): Optional. Parameters of the experiment. After experiment creation params are read-only.
|
|
|
|
|
Parameters are displayed in the experiment’s Parameters section and each key-value pair can be
|
|
|
|
|
viewed in experiments view as a column.
|
|
|
|
|
properties (dict|None): Optional default is {}. Properties of the experiment.
|
|
|
|
|
They are editable after experiment is created. Properties are displayed in the experiment’s Details and
|
|
|
|
|
each key-value pair can be viewed in experiments view as a column.
|
|
|
|
|
tags (list|None): Optional default []. Must be list of str. Tags of the experiment.
|
|
|
|
|
They are editable after experiment is created (see: append_tag() and remove_tag()).
|
|
|
|
|
Tags are displayed in the experiment’s Details and can be viewed in experiments view as a column.
|
2020-01-14 03:20:01 +00:00
|
|
|
|
"""
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.api_key = api_key
|
|
|
|
|
self.project_name = project_name
|
|
|
|
|
self.offline_mode = offline_mode
|
|
|
|
|
self.experiment_name = experiment_name
|
|
|
|
|
self.upload_source_files = upload_source_files
|
|
|
|
|
self.params = params
|
|
|
|
|
self.properties = properties
|
|
|
|
|
self.tags = tags
|
|
|
|
|
self._experiment = None
|
|
|
|
|
self._kwargs = kwargs
|
|
|
|
|
|
|
|
|
|
if offline_mode:
|
|
|
|
|
self.mode = "offline"
|
|
|
|
|
neptune.init(project_qualified_name='dry-run/project',
|
|
|
|
|
backend=neptune.OfflineBackend())
|
|
|
|
|
else:
|
|
|
|
|
self.mode = "online"
|
|
|
|
|
neptune.init(api_token=self.api_key,
|
|
|
|
|
project_qualified_name=self.project_name)
|
|
|
|
|
|
|
|
|
|
logger.info(f"NeptuneLogger was initialized in {self.mode} mode")
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def experiment(self):
|
2020-01-17 11:03:31 +00:00
|
|
|
|
r"""
|
|
|
|
|
|
|
|
|
|
Actual neptune object. To use neptune features do the following.
|
|
|
|
|
|
|
|
|
|
Example::
|
|
|
|
|
|
|
|
|
|
self.logger.experiment.some_neptune_function()
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
2020-01-14 03:20:01 +00:00
|
|
|
|
if self._experiment is not None:
|
|
|
|
|
return self._experiment
|
|
|
|
|
else:
|
|
|
|
|
self._experiment = neptune.create_experiment(name=self.experiment_name,
|
|
|
|
|
params=self.params,
|
|
|
|
|
properties=self.properties,
|
|
|
|
|
tags=self.tags,
|
|
|
|
|
upload_source_files=self.upload_source_files,
|
|
|
|
|
**self._kwargs)
|
|
|
|
|
return self._experiment
|
|
|
|
|
|
|
|
|
|
@rank_zero_only
|
|
|
|
|
def log_hyperparams(self, params):
|
|
|
|
|
for key, val in vars(params).items():
|
|
|
|
|
self.experiment.set_property(f"param__{key}", val)
|
|
|
|
|
|
|
|
|
|
@rank_zero_only
|
|
|
|
|
def log_metrics(self, metrics, step=None):
|
|
|
|
|
"""Log metrics (numeric values) in Neptune experiments
|
|
|
|
|
|
|
|
|
|
:param float metric: Dictionary with metric names as keys and measured quanties as values
|
|
|
|
|
:param int|None step: Step number at which the metrics should be recorded, must be strictly increasing
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
for key, val in metrics.items():
|
|
|
|
|
if is_tensor(val):
|
|
|
|
|
val = val.cpu().detach()
|
|
|
|
|
|
|
|
|
|
if step is None:
|
|
|
|
|
self.experiment.log_metric(key, val)
|
|
|
|
|
else:
|
|
|
|
|
self.experiment.log_metric(key, x=step, y=val)
|
|
|
|
|
|
|
|
|
|
@rank_zero_only
|
|
|
|
|
def finalize(self, status):
|
|
|
|
|
self.experiment.stop()
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def name(self):
|
|
|
|
|
if self.mode == "offline":
|
|
|
|
|
return "offline-name"
|
|
|
|
|
else:
|
|
|
|
|
return self.experiment.name
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def version(self):
|
|
|
|
|
if self.mode == "offline":
|
|
|
|
|
return "offline-id-1234"
|
|
|
|
|
else:
|
|
|
|
|
return self.experiment.id
|
|
|
|
|
|
|
|
|
|
@rank_zero_only
|
|
|
|
|
def log_metric(self, metric_name, metric_value, step=None):
|
|
|
|
|
"""Log metrics (numeric values) in Neptune experiments
|
|
|
|
|
|
|
|
|
|
:param str metric_name: The name of log, i.e. mse, loss, accuracy.
|
|
|
|
|
:param str metric_value: The value of the log (data-point).
|
|
|
|
|
:param int|None step: Step number at which the metrics should be recorded, must be strictly increasing
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
if step is None:
|
|
|
|
|
self.experiment.log_metric(metric_name, metric_value)
|
|
|
|
|
else:
|
|
|
|
|
self.experiment.log_metric(metric_name, x=step, y=metric_value)
|
|
|
|
|
|
|
|
|
|
@rank_zero_only
|
|
|
|
|
def log_text(self, log_name, text, step=None):
|
|
|
|
|
"""Log text data in Neptune experiment
|
|
|
|
|
|
|
|
|
|
:param str log_name: The name of log, i.e. mse, my_text_data, timing_info.
|
|
|
|
|
:param str text: The value of the log (data-point).
|
|
|
|
|
:param int|None step: Step number at which the metrics should be recorded, must be strictly increasing
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
if step is None:
|
|
|
|
|
self.experiment.log_metric(log_name, text)
|
|
|
|
|
else:
|
|
|
|
|
self.experiment.log_metric(log_name, x=step, y=text)
|
|
|
|
|
|
|
|
|
|
@rank_zero_only
|
|
|
|
|
def log_image(self, log_name, image, step=None):
|
|
|
|
|
"""Log image data in Neptune experiment
|
|
|
|
|
|
|
|
|
|
:param str log_name: The name of log, i.e. bboxes, visualisations, sample_images.
|
|
|
|
|
:param str|PIL.Image|matplotlib.figure.Figure image: The value of the log (data-point).
|
|
|
|
|
Can be one of the following types: PIL image, matplotlib.figure.Figure, path to image file (str)
|
|
|
|
|
:param int|None step: Step number at which the metrics should be recorded, must be strictly increasing
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
if step is None:
|
|
|
|
|
self.experiment.log_image(log_name, image)
|
|
|
|
|
else:
|
|
|
|
|
self.experiment.log_image(log_name, x=step, y=image)
|
|
|
|
|
|
|
|
|
|
@rank_zero_only
|
|
|
|
|
def log_artifact(self, artifact, destination=None):
|
|
|
|
|
"""Save an artifact (file) in Neptune experiment storage.
|
|
|
|
|
|
|
|
|
|
:param str artifact: A path to the file in local filesystem.
|
|
|
|
|
:param str|None destination: Optional default None.
|
|
|
|
|
A destination path. If None is passed, an artifact file name will be used.
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
self.experiment.log_artifact(artifact, destination)
|
|
|
|
|
|
|
|
|
|
@rank_zero_only
|
|
|
|
|
def set_property(self, key, value):
|
|
|
|
|
"""Set key-value pair as Neptune experiment property.
|
|
|
|
|
|
|
|
|
|
:param str key: Property key.
|
|
|
|
|
:param obj value: New value of a property.
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
self.experiment.set_property(key, value)
|
|
|
|
|
|
|
|
|
|
@rank_zero_only
|
|
|
|
|
def append_tags(self, tags):
|
|
|
|
|
"""appends tags to neptune experiment
|
|
|
|
|
|
|
|
|
|
:param str|tuple|list(str) tags: Tags to add to the current experiment.
|
|
|
|
|
If str is passed, singe tag is added.
|
|
|
|
|
If multiple - comma separated - str are passed, all of them are added as tags.
|
|
|
|
|
If list of str is passed, all elements of the list are added as tags.
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
if not isinstance(tags, (list, set, tuple)):
|
|
|
|
|
tags = [tags] # make it as an iterable is if it is not yet
|
|
|
|
|
self.experiment.append_tags(*tags)
|