lightning/pytorch_lightning/utilities/__init__.py

55 lines
1.7 KiB
Python
Raw Normal View History

2020-10-13 11:18:07 +00:00
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""General utilities"""
import importlib
from enum import Enum
import numpy
import torch
from pytorch_lightning.utilities.apply_func import move_data_to_device
from pytorch_lightning.utilities.distributed import rank_zero_info, rank_zero_only, rank_zero_warn
from pytorch_lightning.utilities.parsing import AttributeDict, flatten_dict, is_picklable
def _module_available(module_path: str) -> bool:
"""Testing if given module is avalaible in your env
>>> _module_available('system')
True
>>> _module_available('bla.bla')
False
"""
mods = module_path.split('.')
assert mods, 'nothing given to test'
# it has to be tested as per partets
for i in range(1, len(mods)):
module_path = '.'.join(mods[:i])
if importlib.util.find_spec(module_path) is None:
return False
return True
APEX_AVAILABLE = _module_available("apex.amp")
NATIVE_AMP_AVALAIBLE = hasattr(torch.cuda, "amp") and hasattr(torch.cuda.amp, "autocast")
FLOAT16_EPSILON = numpy.finfo(numpy.float16).eps
FLOAT32_EPSILON = numpy.finfo(numpy.float32).eps
FLOAT64_EPSILON = numpy.finfo(numpy.float64).eps
class AMPType(Enum):
APEX = 'apex'
NATIVE = 'native'