lightning/pytorch_lightning/core/optimizer.py

277 lines
11 KiB
Python
Raw Normal View History

optimizer clean up (#4658) * add LightningOptimizer * typo * add mock closure * typo * remove logic in optimizer_step * update * update * update * desactivate LightningOptimizer for hovorod * resolve flake * typo * check optimizer name * change name * added backward to LightningOptimizer * remove use_lightning_optimizer * move update * simplify init * resolve comments * resolve bug * update * update * resolve bugs * resolve flake8 * set state * work manual_optimizer_step * add doc * add enable_pl_optimizer * make optimizer_step * add make_optimizer_step * add examples * resolve test * add test_optimizer_return_options_enable_pl_optimizer * add enable_pl_optimizer=True * update * update tests * resolve bugs * update * set Trainer to False * update * resolve bugs * update * remove from doc * resolve bug * typo * update * set to True * simplification * typo * resolve horovod * unwrap horovod * remove Optimizer * resolve horovod * move logic to amp_backend * doesn't seem to be pickable * update * add again * resolve some bugs * cleanup * resolve bug with AMP * change __repr__ * round at -12 * udpate * update * update * remove from horovod * typo * add convert_to_lightning_optimizers in each accelerators * typo * forgot * forgot a convert_to_lightning_optimizers * update * update * update * increase coverage * update * resolve flake8 * update * remove useless code * resolve comments + add support for LightningOptimizer base class * resolve flake * check optimizer get wrapped back * resolve DDPSharded * reduce code * lightningoptimizer * Update pytorch_lightning/core/optimizer.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update pytorch_lightning/core/lightning.py * remove reference to step function * Apply suggestions from code review * update on comments * resolve * Update CHANGELOG.md * add back training_step in apex and native_amp * rename optimizer_step Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
2020-12-01 00:09:46 +00:00
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
optimizer clean up (#4658) * add LightningOptimizer * typo * add mock closure * typo * remove logic in optimizer_step * update * update * update * desactivate LightningOptimizer for hovorod * resolve flake * typo * check optimizer name * change name * added backward to LightningOptimizer * remove use_lightning_optimizer * move update * simplify init * resolve comments * resolve bug * update * update * resolve bugs * resolve flake8 * set state * work manual_optimizer_step * add doc * add enable_pl_optimizer * make optimizer_step * add make_optimizer_step * add examples * resolve test * add test_optimizer_return_options_enable_pl_optimizer * add enable_pl_optimizer=True * update * update tests * resolve bugs * update * set Trainer to False * update * resolve bugs * update * remove from doc * resolve bug * typo * update * set to True * simplification * typo * resolve horovod * unwrap horovod * remove Optimizer * resolve horovod * move logic to amp_backend * doesn't seem to be pickable * update * add again * resolve some bugs * cleanup * resolve bug with AMP * change __repr__ * round at -12 * udpate * update * update * remove from horovod * typo * add convert_to_lightning_optimizers in each accelerators * typo * forgot * forgot a convert_to_lightning_optimizers * update * update * update * increase coverage * update * resolve flake8 * update * remove useless code * resolve comments + add support for LightningOptimizer base class * resolve flake * check optimizer get wrapped back * resolve DDPSharded * reduce code * lightningoptimizer * Update pytorch_lightning/core/optimizer.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update pytorch_lightning/core/lightning.py * remove reference to step function * Apply suggestions from code review * update on comments * resolve * Update CHANGELOG.md * add back training_step in apex and native_amp * rename optimizer_step Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
2020-12-01 00:09:46 +00:00
import types
from typing import Any, Callable, Optional
optimizer clean up (#4658) * add LightningOptimizer * typo * add mock closure * typo * remove logic in optimizer_step * update * update * update * desactivate LightningOptimizer for hovorod * resolve flake * typo * check optimizer name * change name * added backward to LightningOptimizer * remove use_lightning_optimizer * move update * simplify init * resolve comments * resolve bug * update * update * resolve bugs * resolve flake8 * set state * work manual_optimizer_step * add doc * add enable_pl_optimizer * make optimizer_step * add make_optimizer_step * add examples * resolve test * add test_optimizer_return_options_enable_pl_optimizer * add enable_pl_optimizer=True * update * update tests * resolve bugs * update * set Trainer to False * update * resolve bugs * update * remove from doc * resolve bug * typo * update * set to True * simplification * typo * resolve horovod * unwrap horovod * remove Optimizer * resolve horovod * move logic to amp_backend * doesn't seem to be pickable * update * add again * resolve some bugs * cleanup * resolve bug with AMP * change __repr__ * round at -12 * udpate * update * update * remove from horovod * typo * add convert_to_lightning_optimizers in each accelerators * typo * forgot * forgot a convert_to_lightning_optimizers * update * update * update * increase coverage * update * resolve flake8 * update * remove useless code * resolve comments + add support for LightningOptimizer base class * resolve flake * check optimizer get wrapped back * resolve DDPSharded * reduce code * lightningoptimizer * Update pytorch_lightning/core/optimizer.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update pytorch_lightning/core/lightning.py * remove reference to step function * Apply suggestions from code review * update on comments * resolve * Update CHANGELOG.md * add back training_step in apex and native_amp * rename optimizer_step Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
2020-12-01 00:09:46 +00:00
from weakref import proxy
from torch.optim.optimizer import Optimizer
from pytorch_lightning.utilities import TPU_AVAILABLE
optimizer clean up (#4658) * add LightningOptimizer * typo * add mock closure * typo * remove logic in optimizer_step * update * update * update * desactivate LightningOptimizer for hovorod * resolve flake * typo * check optimizer name * change name * added backward to LightningOptimizer * remove use_lightning_optimizer * move update * simplify init * resolve comments * resolve bug * update * update * resolve bugs * resolve flake8 * set state * work manual_optimizer_step * add doc * add enable_pl_optimizer * make optimizer_step * add make_optimizer_step * add examples * resolve test * add test_optimizer_return_options_enable_pl_optimizer * add enable_pl_optimizer=True * update * update tests * resolve bugs * update * set Trainer to False * update * resolve bugs * update * remove from doc * resolve bug * typo * update * set to True * simplification * typo * resolve horovod * unwrap horovod * remove Optimizer * resolve horovod * move logic to amp_backend * doesn't seem to be pickable * update * add again * resolve some bugs * cleanup * resolve bug with AMP * change __repr__ * round at -12 * udpate * update * update * remove from horovod * typo * add convert_to_lightning_optimizers in each accelerators * typo * forgot * forgot a convert_to_lightning_optimizers * update * update * update * increase coverage * update * resolve flake8 * update * remove useless code * resolve comments + add support for LightningOptimizer base class * resolve flake * check optimizer get wrapped back * resolve DDPSharded * reduce code * lightningoptimizer * Update pytorch_lightning/core/optimizer.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update pytorch_lightning/core/lightning.py * remove reference to step function * Apply suggestions from code review * update on comments * resolve * Update CHANGELOG.md * add back training_step in apex and native_amp * rename optimizer_step Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
2020-12-01 00:09:46 +00:00
from pytorch_lightning.utilities.exceptions import MisconfigurationException
if TPU_AVAILABLE:
import torch_xla.core.xla_model as xm
def is_lightning_optimizer(optimizer):
return isinstance(optimizer, LightningOptimizer)
def do_nothing_closure():
return
class LightningOptimizer:
"""
This class is used to wrap the user optimizers and handle properly
the backward and optimizer_step logic across accelerators, AMP, accumulate_grad_batches
optimizer clean up (#4658) * add LightningOptimizer * typo * add mock closure * typo * remove logic in optimizer_step * update * update * update * desactivate LightningOptimizer for hovorod * resolve flake * typo * check optimizer name * change name * added backward to LightningOptimizer * remove use_lightning_optimizer * move update * simplify init * resolve comments * resolve bug * update * update * resolve bugs * resolve flake8 * set state * work manual_optimizer_step * add doc * add enable_pl_optimizer * make optimizer_step * add make_optimizer_step * add examples * resolve test * add test_optimizer_return_options_enable_pl_optimizer * add enable_pl_optimizer=True * update * update tests * resolve bugs * update * set Trainer to False * update * resolve bugs * update * remove from doc * resolve bug * typo * update * set to True * simplification * typo * resolve horovod * unwrap horovod * remove Optimizer * resolve horovod * move logic to amp_backend * doesn't seem to be pickable * update * add again * resolve some bugs * cleanup * resolve bug with AMP * change __repr__ * round at -12 * udpate * update * update * remove from horovod * typo * add convert_to_lightning_optimizers in each accelerators * typo * forgot * forgot a convert_to_lightning_optimizers * update * update * update * increase coverage * update * resolve flake8 * update * remove useless code * resolve comments + add support for LightningOptimizer base class * resolve flake * check optimizer get wrapped back * resolve DDPSharded * reduce code * lightningoptimizer * Update pytorch_lightning/core/optimizer.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update pytorch_lightning/core/lightning.py * remove reference to step function * Apply suggestions from code review * update on comments * resolve * Update CHANGELOG.md * add back training_step in apex and native_amp * rename optimizer_step Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
2020-12-01 00:09:46 +00:00
"""
def __init__(self,
optimizer: Optimizer,
accumulate_grad_batches: Optional[int] = None):
assert accumulate_grad_batches is None or isinstance(accumulate_grad_batches, int)
if isinstance(accumulate_grad_batches, int) and accumulate_grad_batches < 1:
raise MisconfigurationException(
f"accumulate_grad_batches parameters {accumulate_grad_batches} should be >= 1"
)
self.__dict__ = {k: v for k, v in optimizer.__dict__.items() if k != 'step'}
# For Horovod
if hasattr(optimizer, "skip_synchronize"):
self.__class__ = type("Lightning" + optimizer.__class__.__name__, (self.__class__, optimizer.__class__.__bases__[0]), {})
self.skip_synchronize = optimizer.skip_synchronize
self.synchronize = optimizer.synchronize
else:
self.__class__ = type("Lightning" + optimizer.__class__.__name__, (self.__class__, optimizer.__class__), {})
self._trainer = None
self._optimizer = optimizer
self._accumulate_grad_batches = accumulate_grad_batches
self._support_closure = 'closure' in inspect.signature(optimizer.step).parameters
self._optimizer_idx = None
@property
def accumulate_grad_batches(self):
return self._accumulate_grad_batches
@accumulate_grad_batches.setter
def accumulate_grad_batches(self, accumulate_grad_batches):
self._accumulate_grad_batches = accumulate_grad_batches
optimizer clean up (#4658) * add LightningOptimizer * typo * add mock closure * typo * remove logic in optimizer_step * update * update * update * desactivate LightningOptimizer for hovorod * resolve flake * typo * check optimizer name * change name * added backward to LightningOptimizer * remove use_lightning_optimizer * move update * simplify init * resolve comments * resolve bug * update * update * resolve bugs * resolve flake8 * set state * work manual_optimizer_step * add doc * add enable_pl_optimizer * make optimizer_step * add make_optimizer_step * add examples * resolve test * add test_optimizer_return_options_enable_pl_optimizer * add enable_pl_optimizer=True * update * update tests * resolve bugs * update * set Trainer to False * update * resolve bugs * update * remove from doc * resolve bug * typo * update * set to True * simplification * typo * resolve horovod * unwrap horovod * remove Optimizer * resolve horovod * move logic to amp_backend * doesn't seem to be pickable * update * add again * resolve some bugs * cleanup * resolve bug with AMP * change __repr__ * round at -12 * udpate * update * update * remove from horovod * typo * add convert_to_lightning_optimizers in each accelerators * typo * forgot * forgot a convert_to_lightning_optimizers * update * update * update * increase coverage * update * resolve flake8 * update * remove useless code * resolve comments + add support for LightningOptimizer base class * resolve flake * check optimizer get wrapped back * resolve DDPSharded * reduce code * lightningoptimizer * Update pytorch_lightning/core/optimizer.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update pytorch_lightning/core/lightning.py * remove reference to step function * Apply suggestions from code review * update on comments * resolve * Update CHANGELOG.md * add back training_step in apex and native_amp * rename optimizer_step Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
2020-12-01 00:09:46 +00:00
def _on_trainer_init(self, trainer):
self._trainer = proxy(trainer)
for opt_idx, opt in enumerate(trainer.optimizers):
if opt == self._optimizer:
self._optimizer_idx = opt_idx
break
@classmethod
def to_lightning_optimizer(cls, optimizer, trainer):
optimizer = cls(optimizer)
optimizer._on_trainer_init(trainer)
return optimizer
optimizer clean up (#4658) * add LightningOptimizer * typo * add mock closure * typo * remove logic in optimizer_step * update * update * update * desactivate LightningOptimizer for hovorod * resolve flake * typo * check optimizer name * change name * added backward to LightningOptimizer * remove use_lightning_optimizer * move update * simplify init * resolve comments * resolve bug * update * update * resolve bugs * resolve flake8 * set state * work manual_optimizer_step * add doc * add enable_pl_optimizer * make optimizer_step * add make_optimizer_step * add examples * resolve test * add test_optimizer_return_options_enable_pl_optimizer * add enable_pl_optimizer=True * update * update tests * resolve bugs * update * set Trainer to False * update * resolve bugs * update * remove from doc * resolve bug * typo * update * set to True * simplification * typo * resolve horovod * unwrap horovod * remove Optimizer * resolve horovod * move logic to amp_backend * doesn't seem to be pickable * update * add again * resolve some bugs * cleanup * resolve bug with AMP * change __repr__ * round at -12 * udpate * update * update * remove from horovod * typo * add convert_to_lightning_optimizers in each accelerators * typo * forgot * forgot a convert_to_lightning_optimizers * update * update * update * increase coverage * update * resolve flake8 * update * remove useless code * resolve comments + add support for LightningOptimizer base class * resolve flake * check optimizer get wrapped back * resolve DDPSharded * reduce code * lightningoptimizer * Update pytorch_lightning/core/optimizer.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update pytorch_lightning/core/lightning.py * remove reference to step function * Apply suggestions from code review * update on comments * resolve * Update CHANGELOG.md * add back training_step in apex and native_amp * rename optimizer_step Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
2020-12-01 00:09:46 +00:00
def _accumulated_batches_reached(self):
if self.accumulate_grad_batches is None:
return self._trainer.train_loop._accumulated_batches_reached()
return (self._trainer.batch_idx + 1) % self.accumulate_grad_batches == 0
optimizer clean up (#4658) * add LightningOptimizer * typo * add mock closure * typo * remove logic in optimizer_step * update * update * update * desactivate LightningOptimizer for hovorod * resolve flake * typo * check optimizer name * change name * added backward to LightningOptimizer * remove use_lightning_optimizer * move update * simplify init * resolve comments * resolve bug * update * update * resolve bugs * resolve flake8 * set state * work manual_optimizer_step * add doc * add enable_pl_optimizer * make optimizer_step * add make_optimizer_step * add examples * resolve test * add test_optimizer_return_options_enable_pl_optimizer * add enable_pl_optimizer=True * update * update tests * resolve bugs * update * set Trainer to False * update * resolve bugs * update * remove from doc * resolve bug * typo * update * set to True * simplification * typo * resolve horovod * unwrap horovod * remove Optimizer * resolve horovod * move logic to amp_backend * doesn't seem to be pickable * update * add again * resolve some bugs * cleanup * resolve bug with AMP * change __repr__ * round at -12 * udpate * update * update * remove from horovod * typo * add convert_to_lightning_optimizers in each accelerators * typo * forgot * forgot a convert_to_lightning_optimizers * update * update * update * increase coverage * update * resolve flake8 * update * remove useless code * resolve comments + add support for LightningOptimizer base class * resolve flake * check optimizer get wrapped back * resolve DDPSharded * reduce code * lightningoptimizer * Update pytorch_lightning/core/optimizer.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update pytorch_lightning/core/lightning.py * remove reference to step function * Apply suggestions from code review * update on comments * resolve * Update CHANGELOG.md * add back training_step in apex and native_amp * rename optimizer_step Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
2020-12-01 00:09:46 +00:00
@property
def _should_accumulate(self):
# checks if backward or backward + optimizer step (via closure)
accumulation_done = self._accumulated_batches_reached()
is_final_batch = self._trainer.train_loop._num_training_batches_reached()
return not (accumulation_done or is_final_batch)
def __optimizer_step(self, *args, closure: Optional[Callable] = None, profiler_name: str = None, **kwargs):
trainer = self._trainer
optimizer = self._optimizer
model = trainer.get_model()
if trainer.on_tpu:
with trainer.profiler.profile(profiler_name):
xm.optimizer_step(optimizer, optimizer_args={'closure': closure, **kwargs})
elif trainer.amp_backend is not None:
trainer.precision_connector.backend.optimizer_step(trainer, optimizer, closure)
else:
with trainer.profiler.profile(profiler_name):
if self._support_closure:
optimizer.step(closure=closure, *args, **kwargs)
else:
closure()
optimizer.step(*args, **kwargs)
accelerator_backend = trainer.accelerator_backend
if accelerator_backend is not None and accelerator_backend.rpc_enabled:
if accelerator_backend.ddp_plugin.is_main_rpc_process:
# Initialize optimizer step on main process
accelerator_backend.ddp_plugin.worker_optimizer_step(
model=model,
opt_idx=self._optimizer_idx,
*args,
**kwargs
)
trainer.train_loop.on_before_zero_grad(self)
model.optimizer_zero_grad(
trainer.current_epoch,
trainer.batch_idx,
optimizer,
self._optimizer_idx
)
def _check_make_optimizer_step(self, make_optimizer_step: Optional[bool]) -> bool:
if make_optimizer_step is not None and self._trainer.overriden_optimizer_zero_grad:
raise MisconfigurationException(
"When overriding LightningModule `optimizer_zero_grad`, make_optimizer_step is not allowed.")
if self._trainer.train_loop.automatic_optimization:
if self._trainer.overriden_optimizer_step and self._trainer.overriden_optimizer_zero_grad:
return True
if make_optimizer_step is None:
make_optimizer_step = not self._should_accumulate
return make_optimizer_step
optimizer clean up (#4658) * add LightningOptimizer * typo * add mock closure * typo * remove logic in optimizer_step * update * update * update * desactivate LightningOptimizer for hovorod * resolve flake * typo * check optimizer name * change name * added backward to LightningOptimizer * remove use_lightning_optimizer * move update * simplify init * resolve comments * resolve bug * update * update * resolve bugs * resolve flake8 * set state * work manual_optimizer_step * add doc * add enable_pl_optimizer * make optimizer_step * add make_optimizer_step * add examples * resolve test * add test_optimizer_return_options_enable_pl_optimizer * add enable_pl_optimizer=True * update * update tests * resolve bugs * update * set Trainer to False * update * resolve bugs * update * remove from doc * resolve bug * typo * update * set to True * simplification * typo * resolve horovod * unwrap horovod * remove Optimizer * resolve horovod * move logic to amp_backend * doesn't seem to be pickable * update * add again * resolve some bugs * cleanup * resolve bug with AMP * change __repr__ * round at -12 * udpate * update * update * remove from horovod * typo * add convert_to_lightning_optimizers in each accelerators * typo * forgot * forgot a convert_to_lightning_optimizers * update * update * update * increase coverage * update * resolve flake8 * update * remove useless code * resolve comments + add support for LightningOptimizer base class * resolve flake * check optimizer get wrapped back * resolve DDPSharded * reduce code * lightningoptimizer * Update pytorch_lightning/core/optimizer.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update pytorch_lightning/core/lightning.py * remove reference to step function * Apply suggestions from code review * update on comments * resolve * Update CHANGELOG.md * add back training_step in apex and native_amp * rename optimizer_step Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
2020-12-01 00:09:46 +00:00
def step(self, *args, closure: Optional[Callable] = None, make_optimizer_step: Optional[bool] = None, **kwargs):
"""
Call this directly from your training_step when doing optimizations manually.
By using this we can ensure that all the proper scaling when using 16-bit etc has been done for you
.. tip:: In manual mode we still automatically accumulate grad over batches if
Trainer(accumulate_grad_batches=x) is set.
Args:
closure: One could provide its own optimizer_closure. Set to None by default.
make_optimizer_step: Whether to force an optimizer step. When nothing is provided,
we will use `accumulate_grad_batches` for accumulation frequency by default.
However, one coud provide True and False based on its own scheduling.
Refer to example 2 and 3
args: Any parameters provided to wrapped optimizer.step()
kwargs: Any parameters provided to wrapped optimizer.step()
Example::
def training_step(...):
(opt_a, opt_b) = self.optimizers()
loss_a = ...
# automatically applies scaling, etc...
self.manual_backward(loss_a, opt_a)
opt_a.step()
Example::
def training_step(self, batch, batch_idx):
# using Boring Model
opt = self.optimizers() # only 1 optimizer
def compute_loss():
x = batch[0]
x = F.dropout(x, 0.1)
predictions = self(x)
predictions = F.dropout(predictions, 0.1)
loss = self.loss(None, predictions)
return loss
def closure():
# emulate MC dropout training
num_backward = 1
losses = []
for backward_idx in range(num_backward + 1):
loss = compute_loss()
losses.append(loss)
retain_graph = num_backward!= backward_idx
self.manual_backward(loss, opt, retain_graph=retain_graph)
loss_mean = torch.stack(losses).mean()
loss_std = torch.stack(losses).std()
self.log("train_loss_mean", loss_mean, on_step=True, prog_bar=True, on_epoch=True)
self.log("train_loss_std", loss_std, on_step=True, prog_bar=True, on_epoch=True)
opt.step(loss, closure=closure)
Example::
# Scenario for a gan.
def training_step(self, batch, batch_idx, optimizer_idx):
# emulate gans training
opt_gen, opt_dis = self.optimizers()
# Note: Be careful, don't log on the same key in self.log in both closure
# as they will be aggregated together on epoch_end
def gen_closure():
... forward and compute loss for generator
loss_gen = ...
self.log("loss_gen", loss_gen, on_step=True, on_epoch=True)
self.manual_backward(loss_gen, opt_gen)
def dis_closure():
... forward and compute loss for discriminator
loss_dis = ...
self.log("loss_dis", loss_dis, on_step=True, on_epoch=True)
self.manual_backward(loss_dis, opt_dis)
# this will accumulate gradients for 2 batches and then call opt_gen.step()
opt_gen.step(closure=gen_closure, make_optimizer_step=batch_idx % 2 == 0)
# update discriminator every 4 batches
# therefore, no gradient accumulation for discriminator
if batch_idx % 4 == 0 :
# Note: Set make_optimizer_step to True or it will use by default
# Trainer(accumulate_grad_batches=x)
opt_dis.step(closure=optimizer_closure, make_optimizer_step=True)
"""
profiler_name = f"optimizer_step_and_closure_{self._optimizer_idx}"
optimizer clean up (#4658) * add LightningOptimizer * typo * add mock closure * typo * remove logic in optimizer_step * update * update * update * desactivate LightningOptimizer for hovorod * resolve flake * typo * check optimizer name * change name * added backward to LightningOptimizer * remove use_lightning_optimizer * move update * simplify init * resolve comments * resolve bug * update * update * resolve bugs * resolve flake8 * set state * work manual_optimizer_step * add doc * add enable_pl_optimizer * make optimizer_step * add make_optimizer_step * add examples * resolve test * add test_optimizer_return_options_enable_pl_optimizer * add enable_pl_optimizer=True * update * update tests * resolve bugs * update * set Trainer to False * update * resolve bugs * update * remove from doc * resolve bug * typo * update * set to True * simplification * typo * resolve horovod * unwrap horovod * remove Optimizer * resolve horovod * move logic to amp_backend * doesn't seem to be pickable * update * add again * resolve some bugs * cleanup * resolve bug with AMP * change __repr__ * round at -12 * udpate * update * update * remove from horovod * typo * add convert_to_lightning_optimizers in each accelerators * typo * forgot * forgot a convert_to_lightning_optimizers * update * update * update * increase coverage * update * resolve flake8 * update * remove useless code * resolve comments + add support for LightningOptimizer base class * resolve flake * check optimizer get wrapped back * resolve DDPSharded * reduce code * lightningoptimizer * Update pytorch_lightning/core/optimizer.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update pytorch_lightning/core/lightning.py * remove reference to step function * Apply suggestions from code review * update on comments * resolve * Update CHANGELOG.md * add back training_step in apex and native_amp * rename optimizer_step Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
2020-12-01 00:09:46 +00:00
if closure is None:
closure = do_nothing_closure
profile_name = f"optimizer_step_{self._optimizer_idx}"
optimizer clean up (#4658) * add LightningOptimizer * typo * add mock closure * typo * remove logic in optimizer_step * update * update * update * desactivate LightningOptimizer for hovorod * resolve flake * typo * check optimizer name * change name * added backward to LightningOptimizer * remove use_lightning_optimizer * move update * simplify init * resolve comments * resolve bug * update * update * resolve bugs * resolve flake8 * set state * work manual_optimizer_step * add doc * add enable_pl_optimizer * make optimizer_step * add make_optimizer_step * add examples * resolve test * add test_optimizer_return_options_enable_pl_optimizer * add enable_pl_optimizer=True * update * update tests * resolve bugs * update * set Trainer to False * update * resolve bugs * update * remove from doc * resolve bug * typo * update * set to True * simplification * typo * resolve horovod * unwrap horovod * remove Optimizer * resolve horovod * move logic to amp_backend * doesn't seem to be pickable * update * add again * resolve some bugs * cleanup * resolve bug with AMP * change __repr__ * round at -12 * udpate * update * update * remove from horovod * typo * add convert_to_lightning_optimizers in each accelerators * typo * forgot * forgot a convert_to_lightning_optimizers * update * update * update * increase coverage * update * resolve flake8 * update * remove useless code * resolve comments + add support for LightningOptimizer base class * resolve flake * check optimizer get wrapped back * resolve DDPSharded * reduce code * lightningoptimizer * Update pytorch_lightning/core/optimizer.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update pytorch_lightning/core/lightning.py * remove reference to step function * Apply suggestions from code review * update on comments * resolve * Update CHANGELOG.md * add back training_step in apex and native_amp * rename optimizer_step Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
2020-12-01 00:09:46 +00:00
else:
if not isinstance(closure, types.FunctionType):
raise MisconfigurationException("When closure is provided, it should be a function")
make_optimizer_step = self._check_make_optimizer_step(make_optimizer_step)
optimizer clean up (#4658) * add LightningOptimizer * typo * add mock closure * typo * remove logic in optimizer_step * update * update * update * desactivate LightningOptimizer for hovorod * resolve flake * typo * check optimizer name * change name * added backward to LightningOptimizer * remove use_lightning_optimizer * move update * simplify init * resolve comments * resolve bug * update * update * resolve bugs * resolve flake8 * set state * work manual_optimizer_step * add doc * add enable_pl_optimizer * make optimizer_step * add make_optimizer_step * add examples * resolve test * add test_optimizer_return_options_enable_pl_optimizer * add enable_pl_optimizer=True * update * update tests * resolve bugs * update * set Trainer to False * update * resolve bugs * update * remove from doc * resolve bug * typo * update * set to True * simplification * typo * resolve horovod * unwrap horovod * remove Optimizer * resolve horovod * move logic to amp_backend * doesn't seem to be pickable * update * add again * resolve some bugs * cleanup * resolve bug with AMP * change __repr__ * round at -12 * udpate * update * update * remove from horovod * typo * add convert_to_lightning_optimizers in each accelerators * typo * forgot * forgot a convert_to_lightning_optimizers * update * update * update * increase coverage * update * resolve flake8 * update * remove useless code * resolve comments + add support for LightningOptimizer base class * resolve flake * check optimizer get wrapped back * resolve DDPSharded * reduce code * lightningoptimizer * Update pytorch_lightning/core/optimizer.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update pytorch_lightning/core/lightning.py * remove reference to step function * Apply suggestions from code review * update on comments * resolve * Update CHANGELOG.md * add back training_step in apex and native_amp * rename optimizer_step Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
2020-12-01 00:09:46 +00:00
if make_optimizer_step:
self.__optimizer_step(*args, closure=closure, profiler_name=profiler_name, **kwargs)
optimizer clean up (#4658) * add LightningOptimizer * typo * add mock closure * typo * remove logic in optimizer_step * update * update * update * desactivate LightningOptimizer for hovorod * resolve flake * typo * check optimizer name * change name * added backward to LightningOptimizer * remove use_lightning_optimizer * move update * simplify init * resolve comments * resolve bug * update * update * resolve bugs * resolve flake8 * set state * work manual_optimizer_step * add doc * add enable_pl_optimizer * make optimizer_step * add make_optimizer_step * add examples * resolve test * add test_optimizer_return_options_enable_pl_optimizer * add enable_pl_optimizer=True * update * update tests * resolve bugs * update * set Trainer to False * update * resolve bugs * update * remove from doc * resolve bug * typo * update * set to True * simplification * typo * resolve horovod * unwrap horovod * remove Optimizer * resolve horovod * move logic to amp_backend * doesn't seem to be pickable * update * add again * resolve some bugs * cleanup * resolve bug with AMP * change __repr__ * round at -12 * udpate * update * update * remove from horovod * typo * add convert_to_lightning_optimizers in each accelerators * typo * forgot * forgot a convert_to_lightning_optimizers * update * update * update * increase coverage * update * resolve flake8 * update * remove useless code * resolve comments + add support for LightningOptimizer base class * resolve flake * check optimizer get wrapped back * resolve DDPSharded * reduce code * lightningoptimizer * Update pytorch_lightning/core/optimizer.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update pytorch_lightning/core/lightning.py * remove reference to step function * Apply suggestions from code review * update on comments * resolve * Update CHANGELOG.md * add back training_step in apex and native_amp * rename optimizer_step Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
2020-12-01 00:09:46 +00:00
else:
# make sure to call optimizer_closure when accumulating
with self._trainer.profiler.profile(f"closure_{self._optimizer_idx}"):
with self._trainer.train_loop.block_ddp_sync_behaviour():
optimizer clean up (#4658) * add LightningOptimizer * typo * add mock closure * typo * remove logic in optimizer_step * update * update * update * desactivate LightningOptimizer for hovorod * resolve flake * typo * check optimizer name * change name * added backward to LightningOptimizer * remove use_lightning_optimizer * move update * simplify init * resolve comments * resolve bug * update * update * resolve bugs * resolve flake8 * set state * work manual_optimizer_step * add doc * add enable_pl_optimizer * make optimizer_step * add make_optimizer_step * add examples * resolve test * add test_optimizer_return_options_enable_pl_optimizer * add enable_pl_optimizer=True * update * update tests * resolve bugs * update * set Trainer to False * update * resolve bugs * update * remove from doc * resolve bug * typo * update * set to True * simplification * typo * resolve horovod * unwrap horovod * remove Optimizer * resolve horovod * move logic to amp_backend * doesn't seem to be pickable * update * add again * resolve some bugs * cleanup * resolve bug with AMP * change __repr__ * round at -12 * udpate * update * update * remove from horovod * typo * add convert_to_lightning_optimizers in each accelerators * typo * forgot * forgot a convert_to_lightning_optimizers * update * update * update * increase coverage * update * resolve flake8 * update * remove useless code * resolve comments + add support for LightningOptimizer base class * resolve flake * check optimizer get wrapped back * resolve DDPSharded * reduce code * lightningoptimizer * Update pytorch_lightning/core/optimizer.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update pytorch_lightning/core/lightning.py * remove reference to step function * Apply suggestions from code review * update on comments * resolve * Update CHANGELOG.md * add back training_step in apex and native_amp * rename optimizer_step Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
2020-12-01 00:09:46 +00:00
closure()
def __repr__(self):
groups = [
{
k: round(v, 12) if isinstance(v, float) else v
for k, v in sorted(group.items())
if k != "params"
}
for group in self.param_groups
]
return f"{self.__class__.__name__}(groups={groups})"