lightning/docs/source/experiment_logging.rst

196 lines
5.2 KiB
ReStructuredText
Raw Normal View History

Experiment Logging
===================
Comet.ml
^^^^^^^^
`Comet.ml <https://www.comet.ml/site/>`_ is a third-party logger.
To use CometLogger as your logger do the following.
.. seealso:: :ref:`comet` docs.
.. code-block:: python
from pytorch_lightning.loggers import CometLogger
comet_logger = CometLogger(
api_key=os.environ["COMET_KEY"],
workspace=os.environ["COMET_WORKSPACE"], # Optional
project_name="default_project", # Optional
rest_api_key=os.environ["COMET_REST_KEY"], # Optional
experiment_name="default" # Optional
)
trainer = Trainer(logger=comet_logger)
The CometLogger is available anywhere except ``__init__`` in your LightningModule
.. code-block:: python
class MyModule(pl.LightningModule):
def any_lightning_module_function_or_hook(self, ...):
some_img = fake_image()
self.logger.experiment.add_image('generated_images', some_img, 0)
Neptune.ai
^^^^^^^^^^
`Neptune.ai <https://neptune.ai/>`_ is a third-party logger.
To use Neptune.ai as your logger do the following.
.. seealso:: :ref:`neptune` docs.
.. code-block:: python
from pytorch_lightning.loggers import NeptuneLogger
neptune_logger = NeptuneLogger(
project_name="USER_NAME/PROJECT_NAME",
experiment_name="default", # Optional,
params={"max_epochs": 10}, # Optional,
tags=["pytorch-lightning","mlp"] # Optional,
)
trainer = Trainer(logger=neptune_logger)
The Neptune.ai is available anywhere except ``__init__`` in your LightningModule
.. code-block:: python
class MyModule(pl.LightningModule):
def any_lightning_module_function_or_hook(self, ...):
some_img = fake_image()
self.logger.experiment.add_image('generated_images', some_img, 0)
allegro.ai TRAINS
^^^^^^^^^^^^^^^^^
`allegro.ai <https://github.com/allegroai/trains/>`_ is a third-party logger.
To use TRAINS as your logger do the following.
.. seealso:: :ref:`trains` docs.
.. code-block:: python
from pytorch_lightning.loggers import TrainsLogger
trains_logger = TrainsLogger(
project_name="examples",
task_name="pytorch lightning test"
)
trainer = Trainer(logger=trains_logger)
The TrainsLogger is available anywhere in your LightningModule
.. code-block:: python
class MyModule(pl.LightningModule):
def __init__(self, ...):
some_img = fake_image()
self.logger.log_image('debug', 'generated_image_0', some_img, 0)
Tensorboard
^^^^^^^^^^^
To use `Tensorboard <https://pytorch.org/docs/stable/tensorboard.html>`_ as your logger do the following.
.. seealso:: TensorBoardLogger :ref:`tf-logger`
.. code-block:: python
from pytorch_lightning.loggers import TensorBoardLogger
logger = TensorBoardLogger("tb_logs", name="my_model")
trainer = Trainer(logger=logger)
The TensorBoardLogger is available anywhere except ``__init__`` in your LightningModule
.. code-block:: python
class MyModule(pl.LightningModule):
def any_lightning_module_function_or_hook(self, ...):
some_img = fake_image()
self.logger.experiment.add_image('generated_images', some_img, 0)
Test Tube
^^^^^^^^^
`Test Tube <https://github.com/williamFalcon/test-tube>`_ is a tensorboard logger but with nicer file structure.
To use TestTube as your logger do the following.
.. seealso:: TestTube :ref:`testTube`
.. code-block:: python
from pytorch_lightning.loggers import TestTubeLogger
logger = TestTubeLogger("tb_logs", name="my_model")
trainer = Trainer(logger=logger)
The TestTubeLogger is available anywhere except ``__init__`` in your LightningModule
.. code-block:: python
class MyModule(pl.LightningModule):
def any_lightning_module_function_or_hook(self, ...):
some_img = fake_image()
self.logger.experiment.add_image('generated_images', some_img, 0)
Wandb
^^^^^
`Wandb <https://www.wandb.com/>`_ is a third-party logger.
To use Wandb as your logger do the following.
.. seealso:: :ref:`wandb` docs
.. code-block:: python
from pytorch_lightning.loggers import WandbLogger
wandb_logger = WandbLogger()
trainer = Trainer(logger=wandb_logger)
The Wandb logger is available anywhere except ``__init__`` in your LightningModule
.. code-block:: python
class MyModule(pl.LightningModule):
def any_lightning_module_function_or_hook(self, ...):
some_img = fake_image()
self.logger.experiment.add_image('generated_images', some_img, 0)
Multiple Loggers
^^^^^^^^^^^^^^^^^
PyTorch-Lightning supports use of multiple loggers, just pass a list to the `Trainer`.
.. code-block:: python
from pytorch_lightning.loggers import TensorBoardLogger, TestTubeLogger
logger1 = TensorBoardLogger("tb_logs", name="my_model")
logger2 = TestTubeLogger("tt_logs", name="my_model")
trainer = Trainer(logger=[logger1, logger2])
The loggers are available as a list anywhere except ``__init__`` in your LightningModule
.. code-block:: python
class MyModule(pl.LightningModule):
def any_lightning_module_function_or_hook(self, ...):
some_img = fake_image()
# Option 1
self.logger.experiment[0].add_image('generated_images', some_img, 0)
# Option 2
self.logger[0].experiment.add_image('generated_images', some_img, 0)