lightning/pytorch_lightning/trainer/evaluation_loop_mixin.py

193 lines
6.5 KiB
Python
Raw Normal View History

import torch
import tqdm
from pytorch_lightning.utilities.debugging import MisconfigurationException
class TrainerEvaluationLoopMixin(object):
def evaluate(self, model, dataloaders, max_batches, test=False):
"""
Run evaluation code
:param model: PT model
:param dataloaders: list of PT dataloaders
:param max_batches: Scalar
:param test: boolean
:return:
"""
# enable eval mode
model.zero_grad()
model.eval()
# copy properties for forward overrides
self.copy_trainer_model_properties(model)
# disable gradients to save memory
torch.set_grad_enabled(False)
# bookkeeping
outputs = []
# run training
for dataloader_idx, dataloader in enumerate(dataloaders):
dl_outputs = []
for batch_idx, batch in enumerate(dataloader):
if batch is None: # pragma: no cover
continue
# stop short when on fast_dev_run (sets max_batch=1)
if batch_idx >= max_batches:
break
# -----------------
# RUN EVALUATION STEP
# -----------------
output = self.evaluation_forward(model,
batch,
batch_idx,
dataloader_idx,
test)
# track outputs for collation
dl_outputs.append(output)
# batch done
if test:
self.test_progress_bar.update(1)
else:
self.val_progress_bar.update(1)
self.main_progress_bar.update(1)
outputs.append(dl_outputs)
eval_results = {}
# with a single dataloader don't pass an array
if len(dataloaders) == 1:
outputs = outputs[0]
# give model a chance to do something with the outputs (and method defined)
model = self.get_model()
if test and self.is_overriden('test_end'):
eval_results = model.test_end(outputs)
elif self.is_overriden('validation_end'):
eval_results = model.validation_end(outputs)
# enable train mode again
model.train()
# enable gradients to save memory
torch.set_grad_enabled(True)
return eval_results
def run_evaluation(self, test=False):
# when testing make sure user defined a test step
can_run_test_step = False
if test:
can_run_test_step = self.is_overriden('test_step') and self.is_overriden('test_end')
if not can_run_test_step:
m = '''You called .test() without defining a test step or test_end.
Please define and try again'''
raise MisconfigurationException(m)
# validate only if model has validation_step defined
# test only if test_step or validation_step are defined
run_val_step = self.is_overriden('validation_step')
if run_val_step or can_run_test_step:
# hook
model = self.get_model()
model.on_pre_performance_check()
# select dataloaders
if test:
dataloaders = self.get_test_dataloaders()
max_batches = self.nb_test_batches
else:
# val
dataloaders = self.get_val_dataloaders()
max_batches = self.nb_val_batches
# cap max batches to 1 when using fast_dev_run
if self.fast_dev_run:
max_batches = 1
# init validation or test progress bar
# main progress bar will already be closed when testing so initial position is free
position = 2 * self.process_position + (not test)
desc = 'Testing' if test else 'Validating'
pbar = tqdm.tqdm(desc=desc, total=max_batches, leave=test, position=position,
disable=not self.show_progress_bar, dynamic_ncols=True,
unit='batch')
setattr(self, f'{"test" if test else "val"}_progress_bar', pbar)
# run evaluation
eval_results = self.evaluate(self.model,
dataloaders,
max_batches,
test)
_, prog_bar_metrics, log_metrics, callback_metrics, _ = self.process_output(
eval_results)
# add metrics to prog bar
self.add_tqdm_metrics(prog_bar_metrics)
# log metrics
self.log_metrics(log_metrics, {})
# track metrics for callbacks
self.callback_metrics.update(callback_metrics)
# hook
model.on_post_performance_check()
# add model specific metrics
tqdm_metrics = self.training_tqdm_dict
if not test:
self.main_progress_bar.set_postfix(**tqdm_metrics)
# close progress bar
if test:
self.test_progress_bar.close()
else:
self.val_progress_bar.close()
# model checkpointing
if self.proc_rank == 0 and self.checkpoint_callback is not None and not test:
self.checkpoint_callback.on_epoch_end(epoch=self.current_epoch,
logs=self.callback_metrics)
def evaluation_forward(self, model, batch, batch_idx, dataloader_idx, test=False):
# make dataloader_idx arg in validation_step optional
args = [batch, batch_idx]
if test and len(self.get_test_dataloaders()) > 1:
args.append(dataloader_idx)
elif not test and len(self.get_val_dataloaders()) > 1:
args.append(dataloader_idx)
# handle DP, DDP forward
if self.use_ddp or self.use_dp or self.use_ddp2:
output = model(*args)
return output
# single GPU
if self.single_gpu:
# for single GPU put inputs on gpu manually
root_gpu = 0
if type(self.data_parallel_device_ids) is list:
root_gpu = self.data_parallel_device_ids[0]
batch = self.transfer_batch_to_gpu(batch, root_gpu)
args[0] = batch
# CPU
if test:
output = model.test_step(*args)
else:
output = model.validation_step(*args)
return output