2020-10-10 19:28:25 +00:00
|
|
|
import os
|
|
|
|
import torch
|
|
|
|
import pytest
|
|
|
|
from tests.base.boring_model import BoringModel, RandomDataset
|
|
|
|
from pytorch_lightning import Trainer
|
|
|
|
from pytorch_lightning.utilities import APEX_AVAILABLE
|
|
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
|
|
|
|
|
|
|
2020-10-10 20:44:15 +00:00
|
|
|
def test_multiple_optimizers_manual(tmpdir):
|
|
|
|
os.environ['PL_DEV_DEBUG'] = '1'
|
|
|
|
|
|
|
|
"""
|
|
|
|
Tests that only training_step can be used
|
|
|
|
"""
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx):
|
|
|
|
# manual
|
|
|
|
(opt_a, opt_b) = self.optimizers()
|
|
|
|
loss_1 = self.step(batch[0])
|
|
|
|
|
|
|
|
# make sure there are no grads
|
|
|
|
if batch_idx > 0:
|
|
|
|
assert torch.all(self.layer.weight.grad == 0)
|
|
|
|
|
2020-10-10 22:44:24 +00:00
|
|
|
self.manual_backward(loss_1, opt_a)
|
2020-10-10 20:44:15 +00:00
|
|
|
opt_a.step()
|
|
|
|
opt_a.zero_grad()
|
|
|
|
assert torch.all(self.layer.weight.grad == 0)
|
|
|
|
|
|
|
|
# fake discriminator
|
|
|
|
loss_2 = self.step(batch[0])
|
|
|
|
|
|
|
|
# ensure we forward the correct params to the optimizer
|
|
|
|
# without retain_graph we can't do multiple backward passes
|
2020-10-10 22:44:24 +00:00
|
|
|
self.manual_backward(loss_2, opt_b, retain_graph=True)
|
|
|
|
self.manual_backward(loss_2, opt_a, retain_graph=True)
|
2020-10-10 20:44:15 +00:00
|
|
|
|
|
|
|
assert self.layer.weight.grad is not None
|
|
|
|
opt_b.step()
|
|
|
|
opt_b.zero_grad()
|
|
|
|
assert torch.all(self.layer.weight.grad == 0)
|
|
|
|
|
|
|
|
def training_epoch_end(self, outputs) -> None:
|
|
|
|
# outputs should be an array with an entry per optimizer
|
|
|
|
assert len(outputs) == 2
|
|
|
|
|
|
|
|
def configure_optimizers(self):
|
|
|
|
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
|
|
optimizer_2 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
|
|
return optimizer, optimizer_2
|
|
|
|
|
|
|
|
model = TestModel()
|
|
|
|
model.val_dataloader = None
|
|
|
|
|
|
|
|
limit_train_batches = 2
|
|
|
|
trainer = Trainer(
|
|
|
|
automatic_optimization=False,
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
limit_train_batches=limit_train_batches,
|
|
|
|
limit_val_batches=2,
|
|
|
|
max_epochs=1,
|
|
|
|
log_every_n_steps=1,
|
|
|
|
weights_summary=None,
|
|
|
|
)
|
|
|
|
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
num_manual_backward_calls = 3
|
|
|
|
assert trainer.dev_debugger.count_events('backward_call') == limit_train_batches * num_manual_backward_calls
|
2020-10-10 19:28:25 +00:00
|
|
|
|
2020-10-10 21:25:45 +00:00
|
|
|
|
|
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
|
|
|
|
def test_multiple_optimizers_manual_native_amp(tmpdir):
|
|
|
|
os.environ['PL_DEV_DEBUG'] = '1'
|
|
|
|
|
|
|
|
"""
|
|
|
|
Tests that only training_step can be used
|
|
|
|
"""
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx):
|
|
|
|
# manual
|
|
|
|
(opt_a, opt_b) = self.optimizers()
|
|
|
|
loss_1 = self.step(batch[0])
|
|
|
|
|
|
|
|
# make sure there are no grads
|
|
|
|
if batch_idx > 0:
|
|
|
|
assert torch.all(self.layer.weight.grad == 0)
|
|
|
|
|
2020-10-10 22:44:24 +00:00
|
|
|
self.manual_backward(loss_1, opt_a)
|
2020-10-10 21:25:45 +00:00
|
|
|
opt_a.step()
|
|
|
|
opt_a.zero_grad()
|
|
|
|
assert torch.all(self.layer.weight.grad == 0)
|
|
|
|
|
|
|
|
# fake discriminator
|
|
|
|
loss_2 = self.step(batch[0])
|
|
|
|
|
|
|
|
# ensure we forward the correct params to the optimizer
|
|
|
|
# without retain_graph we can't do multiple backward passes
|
2020-10-10 22:44:24 +00:00
|
|
|
self.manual_backward(loss_2, opt_b, retain_graph=True)
|
|
|
|
self.manual_backward(loss_2, opt_a, retain_graph=True)
|
2020-10-10 21:25:45 +00:00
|
|
|
|
|
|
|
assert self.layer.weight.grad is not None
|
|
|
|
opt_b.step()
|
|
|
|
opt_b.zero_grad()
|
|
|
|
assert torch.all(self.layer.weight.grad == 0)
|
|
|
|
|
|
|
|
def training_epoch_end(self, outputs) -> None:
|
|
|
|
# outputs should be an array with an entry per optimizer
|
|
|
|
assert len(outputs) == 2
|
|
|
|
|
|
|
|
def configure_optimizers(self):
|
|
|
|
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
|
|
optimizer_2 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
|
|
return optimizer, optimizer_2
|
|
|
|
|
|
|
|
model = TestModel()
|
|
|
|
model.val_dataloader = None
|
|
|
|
|
|
|
|
limit_train_batches = 2
|
|
|
|
trainer = Trainer(
|
|
|
|
automatic_optimization=False,
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
limit_train_batches=limit_train_batches,
|
|
|
|
limit_val_batches=2,
|
|
|
|
max_epochs=1,
|
|
|
|
log_every_n_steps=1,
|
|
|
|
weights_summary=None,
|
|
|
|
precision=16,
|
|
|
|
gpus=1
|
|
|
|
)
|
|
|
|
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
num_manual_backward_calls = 3
|
|
|
|
assert trainer.dev_debugger.count_events('backward_call') == limit_train_batches * num_manual_backward_calls
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
|
|
|
|
@pytest.mark.skipif(not APEX_AVAILABLE, reason="test requires apex")
|
|
|
|
def test_multiple_optimizers_manual_apex(tmpdir):
|
|
|
|
os.environ['PL_DEV_DEBUG'] = '1'
|
|
|
|
|
|
|
|
"""
|
|
|
|
Tests that only training_step can be used
|
|
|
|
"""
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx):
|
|
|
|
# manual
|
|
|
|
(opt_a, opt_b) = self.optimizers()
|
|
|
|
x = batch[0]
|
|
|
|
|
|
|
|
loss_1 = self(x)
|
|
|
|
loss_1 = self.loss(loss_1, loss_1)
|
|
|
|
|
|
|
|
# make sure there are no grads
|
|
|
|
if batch_idx > 0:
|
|
|
|
assert torch.all(self.layer.weight.grad == 0)
|
|
|
|
|
2020-10-10 22:44:24 +00:00
|
|
|
self.manual_backward(loss_1, opt_a)
|
2020-10-10 21:25:45 +00:00
|
|
|
opt_a.step()
|
|
|
|
opt_a.zero_grad()
|
|
|
|
assert torch.all(self.layer.weight.grad == 0)
|
|
|
|
|
|
|
|
# fake discriminator
|
|
|
|
loss_2 = self(x)
|
|
|
|
loss_2 = self.loss(loss_2, loss_2)
|
|
|
|
|
|
|
|
# ensure we forward the correct params to the optimizer
|
|
|
|
# without retain_graph we can't do multiple backward passes
|
2020-10-10 22:44:24 +00:00
|
|
|
self.manual_backward(loss_2, opt_b, retain_graph=True)
|
|
|
|
self.manual_backward(loss_2, opt_a, retain_graph=True)
|
2020-10-10 21:25:45 +00:00
|
|
|
|
|
|
|
assert self.layer.weight.grad is not None
|
|
|
|
opt_b.step()
|
|
|
|
opt_b.zero_grad()
|
|
|
|
assert torch.all(self.layer.weight.grad == 0)
|
|
|
|
|
|
|
|
def training_epoch_end(self, outputs) -> None:
|
|
|
|
# outputs should be an array with an entry per optimizer
|
|
|
|
assert len(outputs) == 2
|
|
|
|
|
|
|
|
def configure_optimizers(self):
|
|
|
|
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
|
|
optimizer_2 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
|
|
return optimizer, optimizer_2
|
|
|
|
|
|
|
|
model = TestModel()
|
|
|
|
model.val_dataloader = None
|
|
|
|
|
|
|
|
limit_train_batches = 2
|
|
|
|
trainer = Trainer(
|
|
|
|
automatic_optimization=False,
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
limit_train_batches=limit_train_batches,
|
|
|
|
limit_val_batches=2,
|
|
|
|
max_epochs=1,
|
|
|
|
log_every_n_steps=1,
|
|
|
|
weights_summary=None,
|
|
|
|
precision=16,
|
|
|
|
amp_level='O2',
|
|
|
|
amp_backend='apex',
|
|
|
|
gpus=1
|
|
|
|
)
|
|
|
|
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
num_manual_backward_calls = 3
|
|
|
|
assert trainer.dev_debugger.count_events('backward_call') == limit_train_batches * num_manual_backward_calls
|