2020-12-01 00:09:46 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
from unittest.mock import patch
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from torch.optim import Adam, Optimizer
|
|
|
|
|
2020-12-21 09:15:04 +00:00
|
|
|
from pytorch_lightning import Trainer
|
2020-12-01 00:09:46 +00:00
|
|
|
from pytorch_lightning.core.optimizer import LightningOptimizer
|
2020-12-07 12:55:49 +00:00
|
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
2021-02-08 10:52:02 +00:00
|
|
|
from tests.helpers.boring_model import BoringModel
|
2020-12-01 00:09:46 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_lightning_optimizer(tmpdir):
|
|
|
|
"""
|
|
|
|
Test that optimizer are correctly wrapped by our LightningOptimizer
|
|
|
|
"""
|
2021-02-06 11:07:26 +00:00
|
|
|
|
2020-12-01 00:09:46 +00:00
|
|
|
class TestModel(BoringModel):
|
2021-02-06 11:07:26 +00:00
|
|
|
|
2020-12-01 00:09:46 +00:00
|
|
|
def configure_optimizers(self):
|
|
|
|
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
|
|
# optimizer = LightningOptimizer(self.trainer, optimizer)
|
|
|
|
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1)
|
|
|
|
return [optimizer], [lr_scheduler]
|
|
|
|
|
|
|
|
model = TestModel()
|
|
|
|
trainer = Trainer(
|
2021-01-13 06:48:37 +00:00
|
|
|
default_root_dir=tmpdir,
|
2020-12-01 00:09:46 +00:00
|
|
|
limit_train_batches=1,
|
|
|
|
limit_val_batches=1,
|
|
|
|
max_epochs=1,
|
|
|
|
weights_summary=None,
|
|
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
groups = "{'dampening': 0, 'initial_lr': 0.1, 'lr': 0.01, 'momentum': 0, 'nesterov': False, 'weight_decay': 0}"
|
|
|
|
expected = f"LightningSGD(groups=[{groups}])"
|
2021-01-08 21:13:12 +00:00
|
|
|
assert trainer._lightning_optimizers[0].__repr__() == expected
|
2020-12-01 00:09:46 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_lightning_optimizer_from_user(tmpdir):
|
|
|
|
"""
|
|
|
|
Test that the user can use our LightningOptimizer. Not recommended.
|
|
|
|
"""
|
|
|
|
|
|
|
|
class TestModel(BoringModel):
|
2021-02-06 11:07:26 +00:00
|
|
|
|
2020-12-01 00:09:46 +00:00
|
|
|
def configure_optimizers(self):
|
|
|
|
optimizer = torch.optim.Adam(self.layer.parameters(), lr=0.1)
|
|
|
|
optimizer = LightningOptimizer(optimizer)
|
|
|
|
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1)
|
|
|
|
return [optimizer], [lr_scheduler]
|
|
|
|
|
|
|
|
model = TestModel()
|
|
|
|
trainer = Trainer(
|
2021-01-13 06:48:37 +00:00
|
|
|
default_root_dir=tmpdir,
|
2020-12-01 00:09:46 +00:00
|
|
|
limit_train_batches=1,
|
|
|
|
limit_val_batches=1,
|
|
|
|
max_epochs=1,
|
|
|
|
weights_summary=None,
|
|
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
groups = "{'amsgrad': False, 'betas': (0.9, 0.999), 'eps': 1e-08, 'initial_lr': 0.1, 'lr': 0.01, 'weight_decay': 0}"
|
|
|
|
expected = f"LightningAdam(groups=[{groups}])"
|
2021-01-08 21:13:12 +00:00
|
|
|
assert trainer._lightning_optimizers[0].__repr__() == expected
|
2020-12-01 00:09:46 +00:00
|
|
|
|
|
|
|
|
2020-12-11 13:51:45 +00:00
|
|
|
@patch("torch.optim.Adam.step", autospec=True)
|
|
|
|
@patch("torch.optim.SGD.step", autospec=True)
|
2020-12-01 00:09:46 +00:00
|
|
|
def test_lightning_optimizer_manual_optimization(mock_sgd_step, mock_adam_step, tmpdir):
|
|
|
|
"""
|
|
|
|
Test that the user can use our LightningOptimizer. Not recommended for now.
|
|
|
|
"""
|
2021-02-06 11:07:26 +00:00
|
|
|
|
2020-12-01 00:09:46 +00:00
|
|
|
class TestModel(BoringModel):
|
2021-02-06 11:07:26 +00:00
|
|
|
|
2021-01-12 22:53:43 +00:00
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
self.automatic_optimization = False
|
2020-12-01 00:09:46 +00:00
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
|
|
|
(opt_1, opt_2) = self.optimizers()
|
|
|
|
assert isinstance(opt_1, LightningOptimizer)
|
|
|
|
assert isinstance(opt_2, LightningOptimizer)
|
|
|
|
|
|
|
|
output = self.layer(batch)
|
|
|
|
loss_1 = self.loss(batch, output)
|
|
|
|
self.manual_backward(loss_1, opt_1)
|
2020-12-11 13:51:45 +00:00
|
|
|
opt_1.step()
|
2020-12-01 00:09:46 +00:00
|
|
|
|
|
|
|
def closure():
|
|
|
|
output = self.layer(batch)
|
|
|
|
loss_2 = self.loss(batch, output)
|
|
|
|
self.manual_backward(loss_2, opt_2)
|
2021-02-06 11:07:26 +00:00
|
|
|
|
2020-12-11 13:51:45 +00:00
|
|
|
opt_2.step(closure=closure)
|
2020-12-01 00:09:46 +00:00
|
|
|
|
|
|
|
def configure_optimizers(self):
|
|
|
|
optimizer_1 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
|
|
optimizer_2 = torch.optim.Adam(self.layer.parameters(), lr=0.1)
|
|
|
|
optimizer_1 = LightningOptimizer(optimizer_1, 4)
|
|
|
|
|
|
|
|
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer_1, step_size=1)
|
|
|
|
return [optimizer_1, optimizer_2], [lr_scheduler]
|
|
|
|
|
|
|
|
model = TestModel()
|
|
|
|
model.training_step_end = None
|
|
|
|
model.training_epoch_end = None
|
|
|
|
trainer = Trainer(
|
2021-01-13 06:48:37 +00:00
|
|
|
default_root_dir=tmpdir,
|
2020-12-01 00:09:46 +00:00
|
|
|
limit_train_batches=8,
|
|
|
|
limit_val_batches=1,
|
|
|
|
max_epochs=1,
|
|
|
|
weights_summary=None,
|
2020-12-10 10:01:33 +00:00
|
|
|
)
|
2020-12-01 00:09:46 +00:00
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
assert len(mock_sgd_step.mock_calls) == 2
|
|
|
|
assert len(mock_adam_step.mock_calls) == 8
|
|
|
|
|
|
|
|
|
2020-12-11 13:51:45 +00:00
|
|
|
@patch("torch.optim.Adam.step", autospec=True)
|
|
|
|
@patch("torch.optim.SGD.step", autospec=True)
|
2020-12-01 00:09:46 +00:00
|
|
|
def test_lightning_optimizer_manual_optimization_and_accumulated_gradients(mock_sgd_step, mock_adam_step, tmpdir):
|
|
|
|
"""
|
|
|
|
Test that the user can use our LightningOptimizer. Not recommended.
|
|
|
|
"""
|
2021-02-06 11:07:26 +00:00
|
|
|
|
2020-12-01 00:09:46 +00:00
|
|
|
class TestModel(BoringModel):
|
2021-02-06 11:07:26 +00:00
|
|
|
|
2021-01-12 22:53:43 +00:00
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
self.automatic_optimization = False
|
2020-12-01 00:09:46 +00:00
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
|
|
|
(opt_1, opt_2) = self.optimizers()
|
|
|
|
assert isinstance(opt_1, LightningOptimizer)
|
|
|
|
assert isinstance(opt_2, LightningOptimizer)
|
|
|
|
|
|
|
|
output = self.layer(batch)
|
|
|
|
loss_1 = self.loss(batch, output)
|
|
|
|
self.manual_backward(loss_1, opt_1)
|
2020-12-11 13:51:45 +00:00
|
|
|
opt_1.step()
|
2020-12-01 00:09:46 +00:00
|
|
|
|
|
|
|
def closure():
|
|
|
|
output = self.layer(batch)
|
|
|
|
loss_2 = self.loss(batch, output)
|
|
|
|
self.manual_backward(loss_2, opt_2)
|
2021-02-06 11:07:26 +00:00
|
|
|
|
2020-12-11 13:51:45 +00:00
|
|
|
opt_2.step(closure=closure)
|
2020-12-01 00:09:46 +00:00
|
|
|
|
|
|
|
def configure_optimizers(self):
|
|
|
|
optimizer_1 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
|
|
optimizer_2 = torch.optim.Adam(self.layer.parameters(), lr=0.1)
|
|
|
|
optimizer_1 = LightningOptimizer(optimizer_1, 4)
|
|
|
|
|
|
|
|
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer_1, step_size=1)
|
|
|
|
return [optimizer_1, optimizer_2], [lr_scheduler]
|
|
|
|
|
|
|
|
model = TestModel()
|
|
|
|
model.training_step_end = None
|
|
|
|
model.training_epoch_end = None
|
|
|
|
trainer = Trainer(
|
2021-01-13 06:48:37 +00:00
|
|
|
default_root_dir=tmpdir,
|
2020-12-01 00:09:46 +00:00
|
|
|
limit_train_batches=8,
|
|
|
|
limit_val_batches=1,
|
|
|
|
max_epochs=1,
|
|
|
|
weights_summary=None,
|
|
|
|
accumulate_grad_batches=2,
|
|
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
assert len(mock_sgd_step.mock_calls) == 2
|
|
|
|
assert len(mock_adam_step.mock_calls) == 4
|
|
|
|
|
|
|
|
|
|
|
|
def test_state(tmpdir):
|
|
|
|
model = torch.nn.Linear(3, 4)
|
|
|
|
optimizer = torch.optim.Adam(model.parameters())
|
|
|
|
lightning_optimizer = LightningOptimizer(optimizer)
|
2020-12-11 19:24:59 +00:00
|
|
|
|
|
|
|
# test state
|
|
|
|
assert optimizer.state == lightning_optimizer.state
|
|
|
|
lightning_optimizer.state = optimizer.state
|
|
|
|
assert optimizer.state == lightning_optimizer.state
|
|
|
|
|
|
|
|
# test param_groups
|
|
|
|
assert optimizer.param_groups == lightning_optimizer.param_groups
|
|
|
|
lightning_optimizer.param_groups = optimizer.param_groups
|
|
|
|
assert optimizer.param_groups == lightning_optimizer.param_groups
|
|
|
|
|
|
|
|
# test defaults
|
|
|
|
assert optimizer.defaults == lightning_optimizer.defaults
|
|
|
|
lightning_optimizer.defaults = optimizer.defaults
|
|
|
|
assert optimizer.defaults == lightning_optimizer.defaults
|
|
|
|
|
2020-12-01 00:09:46 +00:00
|
|
|
assert isinstance(lightning_optimizer, LightningOptimizer)
|
|
|
|
assert isinstance(lightning_optimizer, Adam)
|
|
|
|
assert isinstance(lightning_optimizer, Optimizer)
|
2021-01-13 06:48:37 +00:00
|
|
|
|
2020-12-01 00:09:46 +00:00
|
|
|
lightning_dict = {}
|
2021-02-06 11:07:26 +00:00
|
|
|
special_attrs = [
|
2021-02-14 16:03:45 +00:00
|
|
|
"_accumulate_grad_batches",
|
|
|
|
"_optimizer",
|
|
|
|
"_optimizer_idx",
|
|
|
|
"_support_closure",
|
|
|
|
"_trainer",
|
|
|
|
"__getstate__",
|
|
|
|
"__setstate__",
|
|
|
|
"state_dict",
|
|
|
|
"load_state_dict",
|
|
|
|
"zero_grad",
|
|
|
|
"__setstate__",
|
|
|
|
"add_param_group",
|
PoC: Accelerator refactor (#5743)
* restoring the result from subprocess
* fix queue.get() order for results
* add missing "block_backward_sync" context manager
* add missing "block_backward_sync" context manager
* fix sync_batchnorm
* fix supported gpu-ids for tuple
* fix clip gradients and inf recursion
* accelerator selection: added cluster_environment plugin
* fix torchelastic test
* fix reduce early stopping decision for DDP
* fix tests: callbacks, conversion to lightning optimizer
* fix lightning optimizer does not pickle
* fix setting benchmark and deterministic option
* fix slurm amp test
* fix prepare_data test and determine node_rank
* fix retrieving last path when testing
* remove obsolete plugin argument
* fix test: test_trainer_config
* fix torchscript tests
* fix trainer.model access
* move properties
* fix test_transfer_batch_hook
* fix auto_select_gpus
* fix omegaconf test
* fix test that needs to simulate slurm ddp
* add horovod plugin
* fix test with named arguments
* clean up whitespace
* fix datamodules test
* remove old accelerators
* fix naming
* move old plugins
* move to plugins
* create precision subpackage
* create training_type subpackage
* fix all new import errors
* fix wrong arguments order passed to test
* fix LR finder
* Added sharded training type and amp plugin
* Move clip grad to precision plugin
* Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically
* Fix import issue, attempting to fix tests
* Fix initial test
* Reflect hook logic from master, should wrap model after move to device
* Optional state consolidation, since master has optimizers not wrapped
* change attribute for instance test
* reset optimizers
optimizers are not used in main process, so state would be wrong.
* legacy
* imports in accel
* legacy2
* trainer imports
* fix import errors after rebase
* move hook to new setup location
* provide unwrapping logic
* fix trainer callback system
* added ddp2 implementation
* fix imports .legacy
* move plugins
* restore legacy
* drop test.py from root
* add tpu accelerator and plugins
* fixes
* fix lightning optimizer merge
* reset bugreportmodel
* unwrapping
* step routing forward
* model access
* unwrap
* opt
* integrate distrib_type
* sync changes
* sync
* fixes
* add forgotten generators
* add missing logic
* update
* import
* missed imports
* import fixes
* isort
* mv f
* changelog
* format
* move helper to parallel plugin
* d
* add world size
* clean up
* duplicate
* activate ddp_sharded and tpu
* set nvidia flags
* remove unused colab var
* use_tpu <-> on_tpu attrs
* make some ddp_cpu and clusterplugin tests pass
* Ref/accelerator connector (#5742)
* final cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* connector cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* trainer cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* accelerator cleanup + missing logic in accelerator connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add missing changes to callbacks
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* reflect accelerator changes to lightning module
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* clean cluster envs
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* cleanup plugins
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add broadcasting
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* yapf
* remove plugin connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* plugins
* manual optimization
* update optimizer routing
* add rank to torchelastic
* fix memory mixed precision
* setstate on trainer for pickling in ddp spawn
* add predict method
* add back commented accelerator code
* adapt test for sync_batch_norm to new plugin
* fix deprecated tests
* fix ddp cpu choice when no num_processes are given
* yapf format
* skip a memory test that cannot pass anymore
* fix pickle error in spawn plugin
* x
* avoid
* x
* fix cyclic import in docs build
* add support for sharded
* update typing
* add sharded and sharded_spawn to distributed types
* make unwrap model default
* refactor LightningShardedDataParallel similar to LightningDistributedDataParallel
* update sharded spawn to reflect changes
* update sharded to reflect changes
* Merge 1.1.5 changes
* fix merge
* fix merge
* yapf isort
* fix merge
* yapf isort
* fix indentation in test
* copy over reinit scheduler implementation from dev1.2
* fix apex tracking calls with dev_debugger
* reduce diff to dev1.2, clean up
* fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu
* sort plugin tests legacy/new
* fix error handling for amp on cpu
* fix merge
fix merge
fix merge
* [Feat] Resolve manual_backward (#5837)
* resolve manual_backward
* resolve flake8
* update
* resolve for ddp_spawn
* resolve flake8
* resolve flake8
* resolve flake8
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* fix tests/accelerator tests on cpu
* [BugFix] Resolve manual optimization (#5852)
* resolve manual_optimization
* update
* update
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856)
* resovle a bug
* Accelerator refactor sharded rpc (#5854)
* rpc branch
* merge
* update handling of rpc
* make devices etc. Optional in RPC
* set devices etc. later if necessary
* remove devices from sequential
* make devices optional in rpc
* fix import
* uncomment everything
* fix cluster selection
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* resolve bug
* fix assert in rpc test
* resolve a test
* fix docs compilation
* accelerator refactor - fix for sharded parity test (#5866)
* fix memory issue with ddp_spawn
* x
x
x
x
x
x
x
x
x
* x
* Remove DDP2 as this does not apply
* Add missing pre optimizer hook to ensure lambda closure is called
* fix apex docstring
* [accelerator][BugFix] Resolve some test for 1 gpu (#5863)
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* update
* resolve flake8
* update
* update
* update
* update
* update
* all_gather
* update
* make plugins work, add misconfig for RPC
* update
* update
* remove breaking test
* resolve some tests
* resolve flake8
* revert to ddp_spawn
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de>
* yapf isort
* resolve flake8
* fix apex doctests
* fix apex doctests 2
* resolve docs
* update drone
* clean env
* update
* update
* update
* update
* merge
* Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881)
* Fix RPC related tests, clean out old API, update for new accelerator API
* Move tests out of legacy folder, update paths and names
* Update test_remove_1-4.py
* Expose properties for tpu cores/gpus/num_gpus
* Add root GPU property
* Move properties to properties.py
* move tests that were previously in drone
* Fix root GPU property (#5908)
* Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator
* Add missing tests back
* fix best model path transfer when no checkpoint callback available
* Fix setup hook order [wip] (#5858)
* Call trainer setup hook before accelerator setup
* Add test case
* add new test
* typo
* fix callback order in test
Co-authored-by: tchaton <thomas@grid.ai>
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* rename ddp sequential -> rpc sequential for special test
* revert
* fix stupid merge problem
* Use property in connector for sampler (#5913)
* merge the import conflicts
* fix spawning of processes in slurm
* [wip] Fix some bugs for TPU [skip ci] (#5878)
* fixed for single tpu
* fixed spawn
* fixed spawn
* update
* update
* wip
* resolve bugs
* resolve bug
* update on comment
* removed decorator
* resolve comments
* set to 4
* update
* update
* need cleaning
* update
* update
* update
* resolve flake8
* resolve bugs
* exclude broadcast
* resolve bugs
* change test
* update
* update
* skip if meet fails
* properly raise trace
* update
* add catch
* wrap test
* resolve typo
* update
* typo
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
* resolve some tests
* update
* fix imports
* update
* resolve flake8
* update azure pipeline
* skip a sharded test on cpu that requires a gpu
* resolve tpus
* resolve bug
* resolve flake8
* update
* updat utils
* revert permission change on files
* suggestions from carlos
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting changes
* remove incomplete comment
* Update pytorch_lightning/accelerators/__init__.py
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting change
* add types
* warn 1.7 ddp manual backward only if ddp kwarg unset
* yapf + isort
* pep8 unused imports
* fix cyclic import in docs
* Apply suggestions from code review
* typer in accelerator.py
* typo
* Apply suggestions from code review
* formatting
* update on comments
* update typo
* Update pytorch_lightning/trainer/properties.py
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* update
* suggestion from code review
* suggestion from code review
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
Co-authored-by: SeanNaren <sean@grid.ai>
Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz>
Co-authored-by: chaton <thomas@grid.ai>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
|
|
|
"_total_optimizer_step_calls",
|
2021-02-06 11:07:26 +00:00
|
|
|
]
|
2021-01-13 06:48:37 +00:00
|
|
|
|
2020-12-01 00:09:46 +00:00
|
|
|
for k, v in lightning_optimizer.__dict__.items():
|
|
|
|
if k not in special_attrs:
|
|
|
|
lightning_dict[k] = v
|
2021-01-13 06:48:37 +00:00
|
|
|
|
2020-12-01 00:09:46 +00:00
|
|
|
assert lightning_dict == optimizer.__dict__
|
|
|
|
assert optimizer.state_dict() == lightning_optimizer.state_dict()
|
|
|
|
assert optimizer.state == lightning_optimizer.state
|
2020-12-07 12:55:49 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_lightning_optimizer_automatic_optimization(tmpdir):
|
|
|
|
"""
|
|
|
|
Test lightning optimize works with make_optimizer_step in automatic_optimization
|
|
|
|
"""
|
2021-02-06 11:07:26 +00:00
|
|
|
|
2020-12-07 12:55:49 +00:00
|
|
|
class TestModel(BoringModel):
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
|
|
|
output = self.layer(batch)
|
|
|
|
loss = self.loss(batch, output)
|
|
|
|
return {"loss": loss}
|
|
|
|
|
|
|
|
def training_epoch_end(self, outputs):
|
|
|
|
outputs = sum(outputs, [])
|
|
|
|
torch.stack([x["loss"] for x in outputs]).mean()
|
|
|
|
|
2021-02-06 11:07:26 +00:00
|
|
|
def optimizer_step(
|
|
|
|
self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure, on_tpu, using_native_amp, using_lbfgs
|
|
|
|
):
|
2020-12-07 12:55:49 +00:00
|
|
|
|
|
|
|
assert optimizer_closure.__name__ == "train_step_and_backward_closure"
|
|
|
|
|
|
|
|
optimizer.step(closure=optimizer_closure, make_optimizer_step=batch_idx % 2 == 0)
|
|
|
|
|
|
|
|
def configure_optimizers(self):
|
|
|
|
optimizer_1 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
|
|
optimizer_2 = torch.optim.Adam(self.layer.parameters(), lr=0.1)
|
|
|
|
optimizer_1 = LightningOptimizer(optimizer_1, 4)
|
|
|
|
|
|
|
|
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer_1, step_size=1)
|
|
|
|
return [optimizer_1, optimizer_2], [lr_scheduler]
|
|
|
|
|
|
|
|
model = TestModel()
|
|
|
|
trainer = Trainer(
|
2021-01-13 06:48:37 +00:00
|
|
|
default_root_dir=tmpdir,
|
2020-12-07 12:55:49 +00:00
|
|
|
limit_train_batches=10,
|
|
|
|
limit_val_batches=1,
|
|
|
|
max_epochs=1,
|
|
|
|
weights_summary=None,
|
|
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
|
|
|
|
def test_lightning_optimizer_automatic_optimization_optimizer_zero_grad(tmpdir):
|
|
|
|
"""
|
|
|
|
Test lightning optimize works with optimizer_zero_grad overrides in automatic_optimization
|
|
|
|
"""
|
|
|
|
|
|
|
|
with patch("torch.optim.Adam.zero_grad") as adam_zero_grad, \
|
|
|
|
patch("torch.optim.SGD.zero_grad") as sgd_zero_grad:
|
|
|
|
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
|
|
|
output = self.layer(batch)
|
|
|
|
loss = self.loss(batch, output)
|
|
|
|
return {"loss": loss}
|
|
|
|
|
|
|
|
def training_epoch_end(self, outputs):
|
|
|
|
outputs = sum(outputs, [])
|
|
|
|
torch.stack([x["loss"] for x in outputs]).mean()
|
|
|
|
|
|
|
|
def optimizer_zero_grad(self, epoch: int, batch_idx: int, optimizer: Optimizer, optimizer_idx: int):
|
|
|
|
if optimizer_idx == 0:
|
|
|
|
if batch_idx % 2 == 0:
|
|
|
|
optimizer.zero_grad()
|
|
|
|
|
|
|
|
if optimizer_idx == 1:
|
|
|
|
if batch_idx % 5 == 0:
|
|
|
|
optimizer.zero_grad()
|
|
|
|
|
2021-02-06 11:07:26 +00:00
|
|
|
def optimizer_step(
|
|
|
|
self,
|
|
|
|
epoch,
|
|
|
|
batch_idx,
|
|
|
|
optimizer,
|
|
|
|
optimizer_idx,
|
|
|
|
optimizer_closure,
|
|
|
|
on_tpu,
|
|
|
|
using_native_amp,
|
|
|
|
using_lbfgs,
|
|
|
|
):
|
2020-12-07 12:55:49 +00:00
|
|
|
|
|
|
|
assert optimizer_closure.__name__ == "train_step_and_backward_closure"
|
|
|
|
|
|
|
|
optimizer.step(closure=optimizer_closure)
|
|
|
|
|
|
|
|
def configure_optimizers(self):
|
|
|
|
optimizer_1 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
|
|
optimizer_2 = torch.optim.Adam(self.layer.parameters(), lr=0.1)
|
|
|
|
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer_1, step_size=1)
|
|
|
|
return [optimizer_1, optimizer_2], [lr_scheduler]
|
|
|
|
|
|
|
|
model = TestModel()
|
|
|
|
trainer = Trainer(
|
2021-01-13 06:48:37 +00:00
|
|
|
default_root_dir=tmpdir,
|
2020-12-07 12:55:49 +00:00
|
|
|
limit_train_batches=10,
|
|
|
|
limit_val_batches=1,
|
|
|
|
max_epochs=1,
|
|
|
|
weights_summary=None,
|
|
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
assert adam_zero_grad.call_count == 2
|
|
|
|
assert sgd_zero_grad.call_count == 5
|
|
|
|
|
|
|
|
|
|
|
|
def test_lightning_optimizer_automatic_optimization_optimizer_zero_grad_make_optimizer_step(tmpdir):
|
|
|
|
"""
|
|
|
|
Test lightning optimize works with optimizer_zero_grad overrides and make_optimizer_step in automatic_optimization
|
|
|
|
"""
|
|
|
|
|
|
|
|
try:
|
|
|
|
with patch("torch.optim.Adam.zero_grad") as adam_zero_grad, \
|
|
|
|
patch("torch.optim.SGD.zero_grad") as sgd_zero_grad:
|
|
|
|
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
|
|
|
output = self.layer(batch)
|
|
|
|
loss = self.loss(batch, output)
|
|
|
|
return {"loss": loss}
|
|
|
|
|
|
|
|
def training_epoch_end(self, outputs):
|
|
|
|
outputs = sum(outputs, [])
|
|
|
|
torch.stack([x["loss"] for x in outputs]).mean()
|
|
|
|
|
|
|
|
def optimizer_zero_grad(self, epoch: int, batch_idx: int, optimizer: Optimizer, optimizer_idx: int):
|
|
|
|
if optimizer_idx == 0:
|
|
|
|
if batch_idx % 2 == 0:
|
|
|
|
optimizer.zero_grad()
|
|
|
|
|
|
|
|
if optimizer_idx == 1:
|
|
|
|
if batch_idx % 5 == 0:
|
|
|
|
optimizer.zero_grad()
|
|
|
|
|
2021-02-06 11:07:26 +00:00
|
|
|
def optimizer_step(
|
|
|
|
self,
|
|
|
|
epoch,
|
|
|
|
batch_idx,
|
|
|
|
optimizer,
|
|
|
|
optimizer_idx,
|
|
|
|
optimizer_closure,
|
|
|
|
on_tpu,
|
|
|
|
using_native_amp,
|
|
|
|
using_lbfgs,
|
|
|
|
):
|
2020-12-07 12:55:49 +00:00
|
|
|
|
|
|
|
assert optimizer_closure.__name__ == "train_step_and_backward_closure"
|
|
|
|
|
|
|
|
if optimizer_idx == 0:
|
|
|
|
optimizer.step(closure=optimizer_closure, make_optimizer_step=batch_idx % 3 == 0)
|
|
|
|
return
|
|
|
|
optimizer.step(closure=optimizer_closure)
|
|
|
|
|
|
|
|
def configure_optimizers(self):
|
|
|
|
optimizer_1 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
|
|
optimizer_2 = torch.optim.Adam(self.layer.parameters(), lr=0.1)
|
|
|
|
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer_1, step_size=1)
|
|
|
|
return [optimizer_1, optimizer_2], [lr_scheduler]
|
|
|
|
|
|
|
|
model = TestModel()
|
|
|
|
trainer = Trainer(
|
2021-01-13 06:48:37 +00:00
|
|
|
default_root_dir=tmpdir,
|
2020-12-07 12:55:49 +00:00
|
|
|
limit_train_batches=20,
|
|
|
|
limit_val_batches=1,
|
|
|
|
max_epochs=1,
|
|
|
|
weights_summary=None,
|
|
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
assert adam_zero_grad.call_count == 4
|
|
|
|
assert sgd_zero_grad.call_count == 10
|
|
|
|
|
|
|
|
except MisconfigurationException as e:
|
|
|
|
assert "When overriding LightningModule `optimizer_zero_grad`, make_optimizer_step is not allowed" in str(e)
|
|
|
|
|
|
|
|
|
|
|
|
def test_lightning_optimizer_automatic_optimization_make_optimizer_step_2(tmpdir):
|
|
|
|
"""
|
|
|
|
Test lightning optimize works with make_optimizer_step in automatic_optimization
|
|
|
|
"""
|
|
|
|
|
|
|
|
with patch("torch.optim.Adam.zero_grad") as adam_zero_grad, \
|
|
|
|
patch("torch.optim.SGD.zero_grad") as sgd_zero_grad:
|
|
|
|
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
|
|
|
output = self.layer(batch)
|
|
|
|
loss = self.loss(batch, output)
|
|
|
|
return {"loss": loss}
|
|
|
|
|
|
|
|
def training_epoch_end(self, outputs):
|
|
|
|
outputs = sum(outputs, [])
|
|
|
|
torch.stack([x["loss"] for x in outputs]).mean()
|
|
|
|
|
2021-02-06 11:07:26 +00:00
|
|
|
def optimizer_step(
|
|
|
|
self,
|
|
|
|
epoch,
|
|
|
|
batch_idx,
|
|
|
|
optimizer,
|
|
|
|
optimizer_idx,
|
|
|
|
optimizer_closure,
|
|
|
|
on_tpu,
|
|
|
|
using_native_amp,
|
|
|
|
using_lbfgs,
|
|
|
|
):
|
2020-12-07 12:55:49 +00:00
|
|
|
|
|
|
|
assert optimizer_closure.__name__ == "train_step_and_backward_closure"
|
|
|
|
|
|
|
|
make_optimizer_step = None
|
|
|
|
if optimizer_idx == 0:
|
|
|
|
make_optimizer_step = batch_idx % 4 == 0
|
|
|
|
optimizer.step(closure=optimizer_closure, make_optimizer_step=make_optimizer_step)
|
|
|
|
|
|
|
|
def configure_optimizers(self):
|
|
|
|
optimizer_1 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
|
|
optimizer_2 = torch.optim.Adam(self.layer.parameters(), lr=0.1)
|
|
|
|
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer_1, step_size=1)
|
|
|
|
return [optimizer_1, optimizer_2], [lr_scheduler]
|
|
|
|
|
|
|
|
model = TestModel()
|
|
|
|
trainer = Trainer(
|
2021-01-13 06:48:37 +00:00
|
|
|
default_root_dir=tmpdir,
|
2020-12-07 12:55:49 +00:00
|
|
|
limit_train_batches=20,
|
|
|
|
limit_val_batches=1,
|
|
|
|
max_epochs=1,
|
|
|
|
weights_summary=None,
|
|
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
assert adam_zero_grad.call_count == 20
|
|
|
|
assert sgd_zero_grad.call_count == 5
|