2020-07-23 16:13:52 +00:00
|
|
|
from typing import Sequence
|
|
|
|
|
2020-06-17 17:44:06 +00:00
|
|
|
import torch
|
2020-07-09 15:54:38 +00:00
|
|
|
|
2020-07-08 08:26:11 +00:00
|
|
|
from pytorch_lightning.metrics.functional.regression import (
|
2020-07-09 15:54:38 +00:00
|
|
|
mae,
|
|
|
|
mse,
|
2020-07-08 08:26:11 +00:00
|
|
|
psnr,
|
2020-07-09 15:54:38 +00:00
|
|
|
rmse,
|
2020-07-23 16:13:52 +00:00
|
|
|
rmsle,
|
|
|
|
ssim
|
2020-07-08 08:26:11 +00:00
|
|
|
)
|
2020-07-09 15:54:38 +00:00
|
|
|
from pytorch_lightning.metrics.metric import Metric
|
2020-06-17 17:44:06 +00:00
|
|
|
|
|
|
|
|
|
|
|
class MSE(Metric):
|
|
|
|
"""
|
|
|
|
Computes the mean squared loss.
|
2020-07-09 15:54:38 +00:00
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
>>> pred = torch.tensor([0., 1, 2, 3])
|
|
|
|
>>> target = torch.tensor([0., 1, 2, 2])
|
|
|
|
>>> metric = MSE()
|
|
|
|
>>> metric(pred, target)
|
|
|
|
tensor(0.2500)
|
|
|
|
|
2020-06-17 17:44:06 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
reduction: str = 'elementwise_mean',
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
reduction: a method for reducing mse over labels (default: takes the mean)
|
|
|
|
Available reduction methods:
|
|
|
|
- elementwise_mean: takes the mean
|
|
|
|
- none: pass array
|
|
|
|
- sum: add elements
|
|
|
|
"""
|
|
|
|
super().__init__(name='mse')
|
|
|
|
self.reduction = reduction
|
|
|
|
|
|
|
|
def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
|
|
|
"""
|
|
|
|
Actual metric computation
|
|
|
|
|
|
|
|
Args:
|
|
|
|
pred: predicted labels
|
|
|
|
target: ground truth labels
|
|
|
|
|
|
|
|
Return:
|
|
|
|
A Tensor with the mse loss.
|
|
|
|
"""
|
2020-07-09 15:54:38 +00:00
|
|
|
return mse(pred, target, self.reduction)
|
2020-06-17 17:44:06 +00:00
|
|
|
|
|
|
|
|
|
|
|
class RMSE(Metric):
|
|
|
|
"""
|
|
|
|
Computes the root mean squared loss.
|
2020-07-09 15:54:38 +00:00
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
>>> pred = torch.tensor([0., 1, 2, 3])
|
|
|
|
>>> target = torch.tensor([0., 1, 2, 2])
|
|
|
|
>>> metric = RMSE()
|
|
|
|
>>> metric(pred, target)
|
|
|
|
tensor(0.5000)
|
|
|
|
|
2020-06-17 17:44:06 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
reduction: str = 'elementwise_mean',
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
reduction: a method for reducing mse over labels (default: takes the mean)
|
|
|
|
Available reduction methods:
|
|
|
|
- elementwise_mean: takes the mean
|
|
|
|
- none: pass array
|
|
|
|
- sum: add elements
|
|
|
|
"""
|
|
|
|
super().__init__(name='rmse')
|
|
|
|
self.reduction = reduction
|
|
|
|
|
|
|
|
def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
|
|
|
"""
|
|
|
|
Actual metric computation
|
|
|
|
|
|
|
|
Args:
|
|
|
|
pred: predicted labels
|
|
|
|
target: ground truth labels
|
|
|
|
|
|
|
|
Return:
|
|
|
|
A Tensor with the rmse loss.
|
|
|
|
"""
|
2020-07-09 15:54:38 +00:00
|
|
|
return rmse(pred, target, self.reduction)
|
2020-06-17 17:44:06 +00:00
|
|
|
|
|
|
|
|
|
|
|
class MAE(Metric):
|
|
|
|
"""
|
2020-08-08 11:58:18 +00:00
|
|
|
Computes the mean absolute loss or L1-loss.
|
2020-07-09 15:54:38 +00:00
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
>>> pred = torch.tensor([0., 1, 2, 3])
|
|
|
|
>>> target = torch.tensor([0., 1, 2, 2])
|
|
|
|
>>> metric = MAE()
|
|
|
|
>>> metric(pred, target)
|
|
|
|
tensor(0.2500)
|
|
|
|
|
2020-06-17 17:44:06 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
reduction: str = 'elementwise_mean',
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
reduction: a method for reducing mse over labels (default: takes the mean)
|
|
|
|
Available reduction methods:
|
|
|
|
- elementwise_mean: takes the mean
|
|
|
|
- none: pass array
|
|
|
|
- sum: add elements
|
|
|
|
"""
|
|
|
|
super().__init__(name='mae')
|
|
|
|
self.reduction = reduction
|
|
|
|
|
|
|
|
def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
|
|
|
"""
|
|
|
|
Actual metric computation
|
|
|
|
|
|
|
|
Args:
|
|
|
|
pred: predicted labels
|
|
|
|
target: ground truth labels
|
|
|
|
|
|
|
|
Return:
|
|
|
|
A Tensor with the mae loss.
|
|
|
|
"""
|
2020-07-09 15:54:38 +00:00
|
|
|
return mae(pred, target, self.reduction)
|
2020-06-17 17:44:06 +00:00
|
|
|
|
|
|
|
|
|
|
|
class RMSLE(Metric):
|
|
|
|
"""
|
|
|
|
Computes the root mean squared log loss.
|
2020-07-09 15:54:38 +00:00
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
>>> pred = torch.tensor([0., 1, 2, 3])
|
|
|
|
>>> target = torch.tensor([0., 1, 2, 2])
|
|
|
|
>>> metric = RMSLE()
|
|
|
|
>>> metric(pred, target)
|
|
|
|
tensor(0.0207)
|
|
|
|
|
2020-06-17 17:44:06 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
reduction: str = 'elementwise_mean',
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
reduction: a method for reducing mse over labels (default: takes the mean)
|
|
|
|
Available reduction methods:
|
|
|
|
- elementwise_mean: takes the mean
|
|
|
|
- none: pass array
|
|
|
|
- sum: add elements
|
|
|
|
"""
|
|
|
|
super().__init__(name='rmsle')
|
|
|
|
self.reduction = reduction
|
|
|
|
|
|
|
|
def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
|
|
|
"""
|
|
|
|
Actual metric computation
|
|
|
|
|
|
|
|
Args:
|
|
|
|
pred: predicted labels
|
|
|
|
target: ground truth labels
|
|
|
|
|
|
|
|
Return:
|
|
|
|
A Tensor with the rmsle loss.
|
|
|
|
"""
|
2020-07-09 15:54:38 +00:00
|
|
|
return rmsle(pred, target, self.reduction)
|
2020-07-08 08:26:11 +00:00
|
|
|
|
|
|
|
|
|
|
|
class PSNR(Metric):
|
|
|
|
"""
|
2020-07-09 15:54:38 +00:00
|
|
|
Computes the peak signal-to-noise ratio
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
>>> pred = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
|
|
|
|
>>> target = torch.tensor([[3.0, 2.0], [1.0, 0.0]])
|
|
|
|
>>> metric = PSNR()
|
|
|
|
>>> metric(pred, target)
|
|
|
|
tensor(2.5527)
|
|
|
|
|
2020-07-08 08:26:11 +00:00
|
|
|
"""
|
|
|
|
|
2020-07-09 15:54:38 +00:00
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
data_range: float = None,
|
|
|
|
base: int = 10,
|
|
|
|
reduction: str = 'elementwise_mean'
|
|
|
|
):
|
2020-07-08 08:26:11 +00:00
|
|
|
"""
|
|
|
|
Args:
|
2020-07-09 15:54:38 +00:00
|
|
|
data_range: the range of the data. If None, it is determined from the data (max - min)
|
2020-07-08 08:26:11 +00:00
|
|
|
base: a base of a logarithm to use (default: 10)
|
|
|
|
reduction: method for reducing psnr (default: takes the mean)
|
2020-07-09 15:54:38 +00:00
|
|
|
Available reduction methods:
|
|
|
|
- elementwise_mean: takes the mean
|
|
|
|
- none: pass array
|
|
|
|
- sum: add elements
|
2020-07-08 08:26:11 +00:00
|
|
|
"""
|
|
|
|
super().__init__(name='psnr')
|
|
|
|
self.data_range = data_range
|
|
|
|
self.base = float(base)
|
|
|
|
self.reduction = reduction
|
|
|
|
|
|
|
|
def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
2020-07-09 15:54:38 +00:00
|
|
|
"""
|
|
|
|
Actual metric computation
|
|
|
|
|
|
|
|
Args:
|
|
|
|
pred: predicted labels
|
|
|
|
target: ground truth labels
|
|
|
|
|
|
|
|
Return:
|
|
|
|
A Tensor with psnr score.
|
|
|
|
"""
|
2020-07-08 08:26:11 +00:00
|
|
|
return psnr(pred, target, self.data_range, self.base, self.reduction)
|
2020-07-23 16:13:52 +00:00
|
|
|
|
|
|
|
|
|
|
|
class SSIM(Metric):
|
|
|
|
"""
|
|
|
|
Computes Structual Similarity Index Measure
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
>>> pred = torch.rand([16, 1, 16, 16])
|
2020-08-05 17:40:11 +00:00
|
|
|
>>> target = pred * 0.75
|
2020-07-23 16:13:52 +00:00
|
|
|
>>> metric = SSIM()
|
|
|
|
>>> metric(pred, target)
|
2020-08-05 17:40:11 +00:00
|
|
|
tensor(0.9219)
|
2020-07-23 16:13:52 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
kernel_size: Sequence[int] = (11, 11),
|
|
|
|
sigma: Sequence[float] = (1.5, 1.5),
|
|
|
|
reduction: str = "elementwise_mean",
|
|
|
|
data_range: float = None,
|
|
|
|
k1: float = 0.01,
|
|
|
|
k2: float = 0.03
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
kernel_size: Size of the gaussian kernel. Default: (11, 11)
|
|
|
|
sigma: Standard deviation of the gaussian kernel. Default: (1.5, 1.5)
|
|
|
|
reduction: A method for reducing ssim. Default: ``elementwise_mean``
|
|
|
|
|
|
|
|
Available reduction methods:
|
|
|
|
- elementwise_mean: takes the mean
|
|
|
|
- none: pass away
|
|
|
|
- sum: add elements
|
|
|
|
|
|
|
|
data_range: Range of the image. If ``None``, it is determined from the image (max - min)
|
|
|
|
k1: Parameter of SSIM. Default: 0.01
|
|
|
|
k2: Parameter of SSIM. Default: 0.03
|
|
|
|
"""
|
|
|
|
super().__init__(name="ssim")
|
|
|
|
self.kernel_size = kernel_size
|
|
|
|
self.sigma = sigma
|
|
|
|
self.reduction = reduction
|
|
|
|
self.data_range = data_range
|
|
|
|
self.k1 = k1
|
|
|
|
self.k2 = k2
|
|
|
|
|
|
|
|
def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
|
|
|
"""
|
|
|
|
Actual metric computation
|
|
|
|
|
|
|
|
Args:
|
|
|
|
pred: Estimated image
|
|
|
|
target: Ground truth image
|
|
|
|
|
|
|
|
Return:
|
|
|
|
torch.Tensor: SSIM Score
|
|
|
|
"""
|
|
|
|
return ssim(pred, target, self.kernel_size, self.sigma, self.reduction, self.data_range, self.k1, self.k2)
|