lightning/pytorch_lightning/core/grads.py

43 lines
1.3 KiB
Python
Raw Normal View History

2019-03-31 01:45:16 +00:00
"""
Module to describe gradients
"""
from typing import Dict, Union
2019-03-31 01:45:16 +00:00
import torch
Rework of Sklearn Metrics (#1327) * Create utils.py * Create __init__.py * redo sklearn metrics * add some more metrics * add sklearn metrics * Create __init__.py * redo sklearn metrics * New metric classes (#1326) * Create metrics package * Create metric.py * Create utils.py * Create __init__.py * add tests for metric utils * add docstrings for metrics utils * add function to recursively apply other function to collection * add tests for this function * update test * Update pytorch_lightning/metrics/metric.py Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * update metric name * remove example docs * fix tests * add metric tests * fix to tensor conversion * fix apply to collection * Update CHANGELOG.md * Update pytorch_lightning/metrics/metric.py Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * remove tests from init * add missing type annotations * rename utils to convertors * Create metrics.rst * Update index.rst * Update index.rst * Update pytorch_lightning/metrics/convertors.py Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/metrics/convertors.py Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * add doctest example * rename file and fix imports * added parametrized test * replace lambda with inlined function * rename apply_to_collection to apply_func * Separated class description from init args * Apply suggestions from code review Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * adjust random values * suppress output when seeding * remove gpu from doctest * Add requested changes and add ellipsis for doctest * forgot to push these files... * add explicit check for dtype to convert to * fix ddp tests * remove explicit ddp destruction Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * add sklearn metrics * start adding sklearn tests * fix typo * return x and y only for curves * fix typo * add missing tests for sklearn funcs * imports * __all__ * imports * fix sklearn arguments * fix imports * update requirements * Update CHANGELOG.md * Update test_sklearn_metrics.py * formatting * formatting * format * fix all warnings and formatting problems * Update environment.yml * Update requirements-extra.txt * Update environment.yml * Update requirements-extra.txt * fix all warnings and formatting problems * Update CHANGELOG.md * docs * inherit * docs inherit. * docs * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * docs * req * min * Apply suggestions from code review Co-authored-by: Tullie Murrell <tulliemurrell@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> Co-authored-by: Tullie Murrell <tulliemurrell@gmail.com>
2020-06-10 13:43:12 +00:00
from torch.nn import Module
2019-03-31 01:45:16 +00:00
2019-08-05 21:57:39 +00:00
Rework of Sklearn Metrics (#1327) * Create utils.py * Create __init__.py * redo sklearn metrics * add some more metrics * add sklearn metrics * Create __init__.py * redo sklearn metrics * New metric classes (#1326) * Create metrics package * Create metric.py * Create utils.py * Create __init__.py * add tests for metric utils * add docstrings for metrics utils * add function to recursively apply other function to collection * add tests for this function * update test * Update pytorch_lightning/metrics/metric.py Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * update metric name * remove example docs * fix tests * add metric tests * fix to tensor conversion * fix apply to collection * Update CHANGELOG.md * Update pytorch_lightning/metrics/metric.py Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * remove tests from init * add missing type annotations * rename utils to convertors * Create metrics.rst * Update index.rst * Update index.rst * Update pytorch_lightning/metrics/convertors.py Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/metrics/convertors.py Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * add doctest example * rename file and fix imports * added parametrized test * replace lambda with inlined function * rename apply_to_collection to apply_func * Separated class description from init args * Apply suggestions from code review Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * adjust random values * suppress output when seeding * remove gpu from doctest * Add requested changes and add ellipsis for doctest * forgot to push these files... * add explicit check for dtype to convert to * fix ddp tests * remove explicit ddp destruction Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * add sklearn metrics * start adding sklearn tests * fix typo * return x and y only for curves * fix typo * add missing tests for sklearn funcs * imports * __all__ * imports * fix sklearn arguments * fix imports * update requirements * Update CHANGELOG.md * Update test_sklearn_metrics.py * formatting * formatting * format * fix all warnings and formatting problems * Update environment.yml * Update requirements-extra.txt * Update environment.yml * Update requirements-extra.txt * fix all warnings and formatting problems * Update CHANGELOG.md * docs * inherit * docs inherit. * docs * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * docs * req * min * Apply suggestions from code review Co-authored-by: Tullie Murrell <tulliemurrell@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> Co-authored-by: Tullie Murrell <tulliemurrell@gmail.com>
2020-06-10 13:43:12 +00:00
class GradInformation(Module):
2019-03-31 01:45:16 +00:00
def grad_norm(self, norm_type: Union[float, int, str]) -> Dict[str, float]:
"""Compute each parameter's gradient's norm and their overall norm.
The overall norm is computed over all gradients together, as if they
were concatenated into a single vector.
Args:
norm_type: The type of the used p-norm, cast to float if necessary.
Can be ``'inf'`` for infinity norm.
Return:
norms: The dictionary of p-norms of each parameter's gradient and
a special entry for the total p-norm of the gradients viewed
as a single vector.
"""
norm_type = float(norm_type)
norms, all_norms = {}, []
2020-01-14 03:54:06 +00:00
for name, p in self.named_parameters():
if p.grad is None:
continue
param_norm = float(p.grad.data.norm(norm_type))
norms[f'grad_{norm_type}_norm_{name}'] = round(param_norm, 3)
all_norms.append(param_norm)
total_norm = float(torch.tensor(all_norms).norm(norm_type))
norms[f'grad_{norm_type}_norm_total'] = round(total_norm, 3)
return norms