2021-03-11 02:46:37 +00:00
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
|
|
|
|
import tests.helpers.utils as tutils
|
|
|
|
from pytorch_lightning import Trainer
|
|
|
|
from tests.accelerators.test_dp import CustomClassificationModelDP
|
|
|
|
from tests.helpers.datamodules import ClassifDataModule
|
|
|
|
from tests.helpers.runif import RunIf
|
|
|
|
|
|
|
|
|
2021-03-15 14:39:38 +00:00
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"trainer_kwargs", (
|
|
|
|
pytest.param(dict(gpus=1), marks=RunIf(min_gpus=1)),
|
|
|
|
pytest.param(dict(accelerator="dp", gpus=2), marks=RunIf(min_gpus=2)),
|
|
|
|
pytest.param(dict(accelerator="ddp_spawn", gpus=2), marks=RunIf(min_gpus=2)),
|
|
|
|
)
|
|
|
|
)
|
2021-03-11 02:46:37 +00:00
|
|
|
def test_evaluate(tmpdir, trainer_kwargs):
|
|
|
|
tutils.set_random_master_port()
|
|
|
|
|
|
|
|
dm = ClassifDataModule()
|
|
|
|
model = CustomClassificationModelDP()
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
max_epochs=2,
|
|
|
|
limit_train_batches=10,
|
|
|
|
limit_val_batches=10,
|
|
|
|
deterministic=True,
|
|
|
|
**trainer_kwargs
|
|
|
|
)
|
|
|
|
|
|
|
|
result = trainer.fit(model, datamodule=dm)
|
|
|
|
assert result
|
|
|
|
assert 'ckpt' in trainer.checkpoint_callback.best_model_path
|
|
|
|
|
|
|
|
old_weights = model.layer_0.weight.clone().detach().cpu()
|
|
|
|
|
|
|
|
result = trainer.validate(datamodule=dm)
|
|
|
|
assert result[0]['val_acc'] > 0.55
|
|
|
|
|
|
|
|
result = trainer.test(datamodule=dm)
|
|
|
|
assert result[0]['test_acc'] > 0.55
|
|
|
|
|
|
|
|
# make sure weights didn't change
|
|
|
|
new_weights = model.layer_0.weight.clone().detach().cpu()
|
|
|
|
torch.testing.assert_allclose(old_weights, new_weights)
|