2021-01-13 09:42:49 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
r"""
|
|
|
|
Lambda Callback
|
|
|
|
^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
Create a simple callback on the fly using lambda functions.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
from typing import Callable, Optional
|
|
|
|
|
|
|
|
from pytorch_lightning.callbacks.base import Callback
|
|
|
|
|
|
|
|
|
|
|
|
class LambdaCallback(Callback):
|
|
|
|
r"""
|
|
|
|
Create a simple callback on the fly using lambda functions.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
**kwargs: hooks supported by :class:`~pytorch_lightning.callbacks.base.Callback`
|
|
|
|
|
|
|
|
Example::
|
|
|
|
|
|
|
|
>>> from pytorch_lightning import Trainer
|
|
|
|
>>> from pytorch_lightning.callbacks import LambdaCallback
|
|
|
|
>>> trainer = Trainer(callbacks=[LambdaCallback(setup=lambda *args: print('setup'))])
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
on_before_accelerator_backend_setup: Optional[Callable] = None,
|
|
|
|
setup: Optional[Callable] = None,
|
2021-03-29 20:50:51 +00:00
|
|
|
on_configure_sharded_model: Optional[Callable] = None,
|
2021-01-13 09:42:49 +00:00
|
|
|
teardown: Optional[Callable] = None,
|
|
|
|
on_init_start: Optional[Callable] = None,
|
|
|
|
on_init_end: Optional[Callable] = None,
|
|
|
|
on_fit_start: Optional[Callable] = None,
|
|
|
|
on_fit_end: Optional[Callable] = None,
|
|
|
|
on_sanity_check_start: Optional[Callable] = None,
|
|
|
|
on_sanity_check_end: Optional[Callable] = None,
|
|
|
|
on_train_batch_start: Optional[Callable] = None,
|
|
|
|
on_train_batch_end: Optional[Callable] = None,
|
|
|
|
on_train_epoch_start: Optional[Callable] = None,
|
|
|
|
on_train_epoch_end: Optional[Callable] = None,
|
|
|
|
on_validation_epoch_start: Optional[Callable] = None,
|
|
|
|
on_validation_epoch_end: Optional[Callable] = None,
|
|
|
|
on_test_epoch_start: Optional[Callable] = None,
|
|
|
|
on_test_epoch_end: Optional[Callable] = None,
|
|
|
|
on_epoch_start: Optional[Callable] = None,
|
|
|
|
on_epoch_end: Optional[Callable] = None,
|
|
|
|
on_batch_start: Optional[Callable] = None,
|
|
|
|
on_validation_batch_start: Optional[Callable] = None,
|
|
|
|
on_validation_batch_end: Optional[Callable] = None,
|
|
|
|
on_test_batch_start: Optional[Callable] = None,
|
|
|
|
on_test_batch_end: Optional[Callable] = None,
|
|
|
|
on_batch_end: Optional[Callable] = None,
|
|
|
|
on_train_start: Optional[Callable] = None,
|
|
|
|
on_train_end: Optional[Callable] = None,
|
|
|
|
on_pretrain_routine_start: Optional[Callable] = None,
|
|
|
|
on_pretrain_routine_end: Optional[Callable] = None,
|
|
|
|
on_validation_start: Optional[Callable] = None,
|
|
|
|
on_validation_end: Optional[Callable] = None,
|
|
|
|
on_test_start: Optional[Callable] = None,
|
|
|
|
on_test_end: Optional[Callable] = None,
|
|
|
|
on_keyboard_interrupt: Optional[Callable] = None,
|
2021-09-01 08:49:00 +00:00
|
|
|
on_exception: Optional[Callable] = None,
|
2021-01-13 09:42:49 +00:00
|
|
|
on_save_checkpoint: Optional[Callable] = None,
|
|
|
|
on_load_checkpoint: Optional[Callable] = None,
|
2021-07-09 06:15:57 +00:00
|
|
|
on_before_backward: Optional[Callable] = None,
|
2021-01-13 09:42:49 +00:00
|
|
|
on_after_backward: Optional[Callable] = None,
|
2021-07-09 11:30:52 +00:00
|
|
|
on_before_optimizer_step: Optional[Callable] = None,
|
2021-01-13 09:42:49 +00:00
|
|
|
on_before_zero_grad: Optional[Callable] = None,
|
2021-04-22 14:05:28 +00:00
|
|
|
on_predict_start: Optional[Callable] = None,
|
|
|
|
on_predict_end: Optional[Callable] = None,
|
|
|
|
on_predict_batch_start: Optional[Callable] = None,
|
|
|
|
on_predict_batch_end: Optional[Callable] = None,
|
|
|
|
on_predict_epoch_start: Optional[Callable] = None,
|
|
|
|
on_predict_epoch_end: Optional[Callable] = None,
|
2021-01-13 09:42:49 +00:00
|
|
|
):
|
2021-04-22 14:05:28 +00:00
|
|
|
for k, v in locals().items():
|
|
|
|
if k == "self":
|
|
|
|
continue
|
|
|
|
if v is not None:
|
|
|
|
setattr(self, k, v)
|