lightning/docs/source/examples/basic_trainer.py

75 lines
1.9 KiB
Python
Raw Normal View History

2019-03-31 20:29:50 +00:00
import os
import sys
from test_tube import HyperOptArgumentParser, Experiment
2019-06-25 22:11:13 +00:00
from pytorch_lightning.models.trainer import Trainer
from pytorch_lightning.utils.arg_parse import add_default_args
from pytorch_lightning.utils.pt_callbacks import EarlyStopping, ModelCheckpoint
from docs.source.examples.example_model import ExampleModel
2019-03-31 20:29:50 +00:00
def main(hparams):
"""
Main training routine specific for this project
:param hparams:
:return:
"""
# init experiment
exp = Experiment(
name=hparams.tt_name,
debug=hparams.debug,
save_dir=hparams.tt_save_path,
version=hparams.hpc_exp_number,
autosave=False,
description=hparams.tt_description
)
exp.argparse(hparams)
exp.save()
# build model
model = ExampleModel(hparams)
# callbacks
early_stop = EarlyStopping(
2019-03-31 20:34:13 +00:00
monitor='val_acc',
patience=3,
mode='min',
2019-03-31 20:29:50 +00:00
verbose=True,
)
model_save_path = '{}/{}/{}'.format(hparams.model_save_path, exp.name, exp.version)
checkpoint = ModelCheckpoint(
filepath=model_save_path,
save_function=None,
save_best_only=True,
verbose=True,
2019-03-31 20:34:13 +00:00
monitor='val_acc',
mode='min'
2019-03-31 20:29:50 +00:00
)
# configure trainer
trainer = Trainer(
experiment=exp,
checkpoint_callback=checkpoint,
early_stop_callback=early_stop,
)
# train model
trainer.fit(model)
if __name__ == '__main__':
# use default args given by lightning
root_dir = os.path.split(os.path.dirname(sys.modules['__main__'].__file__))[0]
parent_parser = HyperOptArgumentParser(strategy='random_search', add_help=False)
add_default_args(parent_parser, root_dir)
# allow model to overwrite or extend args
parser = ExampleModel.add_model_specific_args(parent_parser)
hyperparams = parser.parse_args()
# train model
main(hyperparams)