138 lines
5.1 KiB
Python
138 lines
5.1 KiB
Python
|
# Copyright The PyTorch Lightning team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
"""Here is an example of `Lightning Fault Tolerant Automatic`.
|
||
|
|
||
|
Find the documentation: https://pytorch-lightning.readthedocs.io/en/stable/advanced/fault_tolerant_training.html
|
||
|
|
||
|
RUN WITHOUT FAILURE:
|
||
|
|
||
|
1. Launch `python pl_examples/fault_tolerant/automatic.py`.
|
||
|
- You should see `[-1.1343, 0.0186]` in the logs.
|
||
|
|
||
|
RUN WITH SIMULATED FAILURE:
|
||
|
|
||
|
1. Launch `python pl_examples/fault_tolerant/automatic.py --emulate_kill_signal`.
|
||
|
- You should see `kill -SIGTERM {PID}` in the logs.
|
||
|
2. Run this command within another terminal.
|
||
|
- You should see `Received signal 15. Saving a fault-tolerant checkpoint and terminating.` in the logs.
|
||
|
3. Launch `python pl_examples/fault_tolerant/automatic.py --emulate_kill_signal` again.
|
||
|
- You should see `Restored all states from the checkpoint file at ./.pl_auto_save.ckpt`
|
||
|
- And you should see `[-1.1343, 0.0186]` in the logs.
|
||
|
|
||
|
To restart the process, just run `rm .pl_auto_save.ckpt` to delete the auto restart checkpoint.
|
||
|
|
||
|
This example shows that the weights trained with failure matches the weight trained without failure,
|
||
|
thus the training has been properly resumed whilst being fully reproducible.
|
||
|
|
||
|
Used PyTorch 1.7.1.
|
||
|
"""
|
||
|
|
||
|
import os
|
||
|
import random as python_random
|
||
|
from argparse import ArgumentParser
|
||
|
from time import sleep
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
from torch.utils.data import DataLoader, Dataset
|
||
|
|
||
|
from pytorch_lightning import _logger as log
|
||
|
from pytorch_lightning import LightningModule, seed_everything, Trainer
|
||
|
|
||
|
|
||
|
class RandomGetItemDataset(Dataset):
|
||
|
"""A dataset with random elements generated using global rng from torch, numpy and python."""
|
||
|
|
||
|
def __init__(self, length, size):
|
||
|
self.size = size
|
||
|
self.len = length
|
||
|
|
||
|
def __getitem__(self, index):
|
||
|
t = torch.rand(self.size)
|
||
|
n = torch.from_numpy(np.random.rand(self.size))
|
||
|
p = torch.tensor([python_random.random() for _ in range(self.size)])
|
||
|
sample = (index + (t + n + p) / 10).float()
|
||
|
return sample
|
||
|
|
||
|
def __len__(self):
|
||
|
return self.len
|
||
|
|
||
|
|
||
|
class SimpleMLP(LightningModule):
|
||
|
def __init__(self, fail_on_step: int = -1):
|
||
|
super().__init__()
|
||
|
self.layer = torch.nn.Linear(1, 2)
|
||
|
self.seen_batches = []
|
||
|
self.fail_on_step = fail_on_step
|
||
|
|
||
|
def training_step(self, batch, batch_idx):
|
||
|
if self.global_step == self.fail_on_step:
|
||
|
log.info(
|
||
|
f"READY TO BE KILLED WITH SIGTERM SIGNAL. " f"Run `kill -SIGTERM {os.getpid()}` in another terminal."
|
||
|
)
|
||
|
# this line is used to wait for you to send the signal to exit gracefully.
|
||
|
while not self.trainer._terminate_gracefully:
|
||
|
sleep(0.1)
|
||
|
batch = batch["data"] if isinstance(batch, dict) else batch
|
||
|
self.seen_batches.append(torch.stack(batch) if isinstance(batch, list) else batch)
|
||
|
loss = sum(self.layer(b).sum() for b in batch)
|
||
|
return loss
|
||
|
|
||
|
def configure_optimizers(self):
|
||
|
return torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
||
|
|
||
|
def train_dataloader(self):
|
||
|
return DataLoader(RandomGetItemDataset(3, 1))
|
||
|
|
||
|
|
||
|
def _run_training(default_root_dir=".", max_epochs=3, fail_on_step: int = -1, ckpt_path=None):
|
||
|
model = SimpleMLP(fail_on_step=fail_on_step)
|
||
|
trainer = Trainer(default_root_dir=default_root_dir, max_epochs=max_epochs)
|
||
|
trainer.fit(model, ckpt_path=ckpt_path)
|
||
|
return model.seen_batches, model.parameters()
|
||
|
|
||
|
|
||
|
def main(args):
|
||
|
seed_everything(42)
|
||
|
os.environ["PL_FAULT_TOLERANT_TRAINING"] = "automatic" # active fault tolerant automatic
|
||
|
|
||
|
ckpt_path = ".pl_auto_save.ckpt"
|
||
|
auto_restart_ckpt_path_exists = os.path.exists(ckpt_path)
|
||
|
if args.emulate_kill_signal:
|
||
|
fail_on_step = -1 if auto_restart_ckpt_path_exists else 4
|
||
|
completed_batches = 4 if auto_restart_ckpt_path_exists else 5
|
||
|
else:
|
||
|
fail_on_step = -1
|
||
|
completed_batches = 9
|
||
|
|
||
|
complete_batches, weights = _run_training(fail_on_step=fail_on_step)
|
||
|
assert len(complete_batches) == completed_batches
|
||
|
|
||
|
if not auto_restart_ckpt_path_exists and args.emulate_kill_signal:
|
||
|
assert os.path.exists(ckpt_path)
|
||
|
|
||
|
if auto_restart_ckpt_path_exists or not args.emulate_kill_signal:
|
||
|
log.info([w for w in weights])
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = ArgumentParser(description="Fault Tolerant Under Signal Example")
|
||
|
parser.add_argument(
|
||
|
"--emulate_kill_signal",
|
||
|
action="store_true",
|
||
|
help="Whether you should gracefully kill the process with a `SIGTERM` signal.",
|
||
|
)
|
||
|
main(parser.parse_args())
|