209 lines
5.2 KiB
Python
209 lines
5.2 KiB
Python
|
import os
|
||
|
import warnings
|
||
|
|
||
|
import pytest
|
||
|
import torch
|
||
|
|
||
|
from pytorch_lightning import Trainer
|
||
|
from pytorch_lightning.testing import (
|
||
|
LightningTestModel,
|
||
|
)
|
||
|
from pytorch_lightning.utilities.debugging import MisconfigurationException
|
||
|
from . import testing_utils
|
||
|
|
||
|
|
||
|
def test_amp_single_gpu():
|
||
|
"""
|
||
|
Make sure DDP + AMP work
|
||
|
:return:
|
||
|
"""
|
||
|
testing_utils.reset_seed()
|
||
|
|
||
|
if not testing_utils.can_run_gpu_test():
|
||
|
return
|
||
|
|
||
|
hparams = testing_utils.get_hparams()
|
||
|
model = LightningTestModel(hparams)
|
||
|
|
||
|
trainer_options = dict(
|
||
|
show_progress_bar=True,
|
||
|
max_nb_epochs=1,
|
||
|
gpus=1,
|
||
|
distributed_backend='ddp',
|
||
|
use_amp=True
|
||
|
)
|
||
|
|
||
|
testing_utils.run_gpu_model_test(trainer_options, model, hparams)
|
||
|
|
||
|
|
||
|
def test_no_amp_single_gpu():
|
||
|
"""
|
||
|
Make sure DDP + AMP work
|
||
|
:return:
|
||
|
"""
|
||
|
testing_utils.reset_seed()
|
||
|
|
||
|
if not testing_utils.can_run_gpu_test():
|
||
|
return
|
||
|
|
||
|
hparams = testing_utils.get_hparams()
|
||
|
model = LightningTestModel(hparams)
|
||
|
|
||
|
trainer_options = dict(
|
||
|
show_progress_bar=True,
|
||
|
max_nb_epochs=1,
|
||
|
gpus=1,
|
||
|
distributed_backend='dp',
|
||
|
use_amp=True
|
||
|
)
|
||
|
|
||
|
with pytest.raises((MisconfigurationException, ModuleNotFoundError)):
|
||
|
testing_utils.run_gpu_model_test(trainer_options, model, hparams)
|
||
|
|
||
|
|
||
|
def test_amp_gpu_ddp():
|
||
|
"""
|
||
|
Make sure DDP + AMP work
|
||
|
:return:
|
||
|
"""
|
||
|
if not testing_utils.can_run_gpu_test():
|
||
|
return
|
||
|
|
||
|
testing_utils.reset_seed()
|
||
|
testing_utils.set_random_master_port()
|
||
|
|
||
|
hparams = testing_utils.get_hparams()
|
||
|
model = LightningTestModel(hparams)
|
||
|
|
||
|
trainer_options = dict(
|
||
|
show_progress_bar=True,
|
||
|
max_nb_epochs=1,
|
||
|
gpus=2,
|
||
|
distributed_backend='ddp',
|
||
|
use_amp=True
|
||
|
)
|
||
|
|
||
|
testing_utils.run_gpu_model_test(trainer_options, model, hparams)
|
||
|
|
||
|
|
||
|
def test_amp_gpu_ddp_slurm_managed():
|
||
|
"""
|
||
|
Make sure DDP + AMP work
|
||
|
:return:
|
||
|
"""
|
||
|
if not testing_utils.can_run_gpu_test():
|
||
|
return
|
||
|
|
||
|
testing_utils.reset_seed()
|
||
|
|
||
|
# simulate setting slurm flags
|
||
|
testing_utils.set_random_master_port()
|
||
|
os.environ['SLURM_LOCALID'] = str(0)
|
||
|
|
||
|
hparams = testing_utils.get_hparams()
|
||
|
model = LightningTestModel(hparams)
|
||
|
|
||
|
trainer_options = dict(
|
||
|
show_progress_bar=True,
|
||
|
max_nb_epochs=1,
|
||
|
gpus=[0],
|
||
|
distributed_backend='ddp',
|
||
|
use_amp=True
|
||
|
)
|
||
|
|
||
|
save_dir = testing_utils.init_save_dir()
|
||
|
|
||
|
# exp file to get meta
|
||
|
logger = testing_utils.get_test_tube_logger(False)
|
||
|
|
||
|
# exp file to get weights
|
||
|
checkpoint = testing_utils.init_checkpoint_callback(logger)
|
||
|
|
||
|
# add these to the trainer options
|
||
|
trainer_options['checkpoint_callback'] = checkpoint
|
||
|
trainer_options['logger'] = logger
|
||
|
|
||
|
# fit model
|
||
|
trainer = Trainer(**trainer_options)
|
||
|
trainer.is_slurm_managing_tasks = True
|
||
|
result = trainer.fit(model)
|
||
|
|
||
|
# correct result and ok accuracy
|
||
|
assert result == 1, 'amp + ddp model failed to complete'
|
||
|
|
||
|
# test root model address
|
||
|
assert trainer.resolve_root_node_address('abc') == 'abc'
|
||
|
assert trainer.resolve_root_node_address('abc[23]') == 'abc23'
|
||
|
assert trainer.resolve_root_node_address('abc[23-24]') == 'abc23'
|
||
|
assert trainer.resolve_root_node_address('abc[23-24, 45-40, 40]') == 'abc23'
|
||
|
|
||
|
# test model loading with a map_location
|
||
|
pretrained_model = testing_utils.load_model(logger.experiment,
|
||
|
trainer.checkpoint_callback.filepath)
|
||
|
|
||
|
# test model preds
|
||
|
for dataloader in trainer.get_test_dataloaders():
|
||
|
testing_utils.run_prediction(dataloader, pretrained_model)
|
||
|
|
||
|
if trainer.use_ddp:
|
||
|
# on hpc this would work fine... but need to hack it for the purpose of the test
|
||
|
trainer.model = pretrained_model
|
||
|
trainer.optimizers, trainer.lr_schedulers = pretrained_model.configure_optimizers()
|
||
|
|
||
|
# test HPC loading / saving
|
||
|
trainer.hpc_save(save_dir, logger)
|
||
|
trainer.hpc_load(save_dir, on_gpu=True)
|
||
|
|
||
|
# test freeze on gpu
|
||
|
model.freeze()
|
||
|
model.unfreeze()
|
||
|
|
||
|
testing_utils.clear_save_dir()
|
||
|
|
||
|
|
||
|
def test_cpu_model_with_amp():
|
||
|
"""
|
||
|
Make sure model trains on CPU
|
||
|
:return:
|
||
|
"""
|
||
|
testing_utils.reset_seed()
|
||
|
|
||
|
trainer_options = dict(
|
||
|
show_progress_bar=False,
|
||
|
logger=testing_utils.get_test_tube_logger(),
|
||
|
max_nb_epochs=1,
|
||
|
train_percent_check=0.4,
|
||
|
val_percent_check=0.4,
|
||
|
use_amp=True
|
||
|
)
|
||
|
|
||
|
model, hparams = testing_utils.get_model()
|
||
|
|
||
|
with pytest.raises((MisconfigurationException, ModuleNotFoundError)):
|
||
|
testing_utils.run_gpu_model_test(trainer_options, model, hparams, on_gpu=False)
|
||
|
|
||
|
|
||
|
def test_amp_gpu_dp():
|
||
|
"""
|
||
|
Make sure DP + AMP work
|
||
|
:return:
|
||
|
"""
|
||
|
testing_utils.reset_seed()
|
||
|
|
||
|
if not testing_utils.can_run_gpu_test():
|
||
|
return
|
||
|
|
||
|
model, hparams = testing_utils.get_model()
|
||
|
trainer_options = dict(
|
||
|
max_nb_epochs=1,
|
||
|
gpus='0, 1', # test init with gpu string
|
||
|
distributed_backend='dp',
|
||
|
use_amp=True
|
||
|
)
|
||
|
with pytest.raises(MisconfigurationException):
|
||
|
testing_utils.run_gpu_model_test(trainer_options, model, hparams)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
pytest.main([__file__])
|