lightning/pytorch_lightning/utilities/parsing.py

378 lines
13 KiB
Python
Raw Normal View History

2020-08-20 02:03:22 +00:00
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import inspect
import pickle
import types
2020-04-27 10:51:42 +00:00
from argparse import Namespace
from dataclasses import fields, is_dataclass
from typing import Any, Dict, List, Optional, Sequence, Tuple, Type, Union
2020-04-27 10:51:42 +00:00
from typing_extensions import Literal
import pytorch_lightning as pl
from pytorch_lightning.utilities.warnings import rank_zero_warn
2020-04-27 10:51:42 +00:00
def str_to_bool_or_str(val: str) -> Union[str, bool]:
"""Possibly convert a string representation of truth to bool. Returns the input otherwise. Based on the python
implementation distutils.utils.strtobool.
True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values are 'n', 'no', 'f', 'false', 'off', and '0'.
"""
lower = val.lower()
if lower in ("y", "yes", "t", "true", "on", "1"):
return True
if lower in ("n", "no", "f", "false", "off", "0"):
return False
return val
def str_to_bool(val: str) -> bool:
"""Convert a string representation of truth to bool.
True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values
are 'n', 'no', 'f', 'false', 'off', and '0'.
Raises:
ValueError:
If ``val`` isn't in one of the aforementioned true or false values.
>>> str_to_bool('YES')
True
>>> str_to_bool('FALSE')
False
"""
val_converted = str_to_bool_or_str(val)
if isinstance(val_converted, bool):
return val_converted
raise ValueError(f"invalid truth value {val_converted}")
2020-04-27 10:51:42 +00:00
def str_to_bool_or_int(val: str) -> Union[bool, int, str]:
"""Convert a string representation to truth of bool if possible, or otherwise try to convert it to an int.
>>> str_to_bool_or_int("FALSE")
False
>>> str_to_bool_or_int("1")
True
>>> str_to_bool_or_int("2")
2
>>> str_to_bool_or_int("abc")
'abc'
"""
val_converted = str_to_bool_or_str(val)
if isinstance(val_converted, bool):
return val_converted
try:
return int(val_converted)
except ValueError:
return val_converted
def is_picklable(obj: object) -> bool:
"""Tests if an object can be pickled."""
try:
pickle.dumps(obj)
return True
except (pickle.PickleError, AttributeError, RuntimeError):
return False
def clean_namespace(hparams: Union[Dict[str, Any], Namespace]) -> None:
"""Removes all unpicklable entries from hparams."""
2020-04-27 10:51:42 +00:00
hparams_dict = hparams
2020-04-27 10:51:42 +00:00
if isinstance(hparams, Namespace):
hparams_dict = hparams.__dict__
del_attrs = [k for k, v in hparams_dict.items() if not is_picklable(v)]
for k in del_attrs:
rank_zero_warn(f"attribute '{k}' removed from hparams because it cannot be pickled")
del hparams_dict[k]
def parse_class_init_keys(cls: Type["pl.LightningModule"]) -> Tuple[str, Optional[str], Optional[str]]:
"""Parse key words for standard self, *args and **kwargs.
>>> class Model():
... def __init__(self, hparams, *my_args, anykw=42, **my_kwargs):
... pass
>>> parse_class_init_keys(Model)
('self', 'my_args', 'my_kwargs')
"""
init_parameters = inspect.signature(cls.__init__).parameters
# docs claims the params are always ordered
# https://docs.python.org/3/library/inspect.html#inspect.Signature.parameters
init_params = list(init_parameters.values())
# self is always first
n_self = init_params[0].name
def _get_first_if_any(
params: List[inspect.Parameter],
param_type: Literal[inspect._ParameterKind.VAR_POSITIONAL, inspect._ParameterKind.VAR_KEYWORD],
) -> Optional[str]:
for p in params:
if p.kind == param_type:
return p.name
return None
n_args = _get_first_if_any(init_params, inspect.Parameter.VAR_POSITIONAL)
n_kwargs = _get_first_if_any(init_params, inspect.Parameter.VAR_KEYWORD)
return n_self, n_args, n_kwargs
def get_init_args(frame: types.FrameType) -> Dict[str, Any]:
_, _, _, local_vars = inspect.getargvalues(frame)
if "__class__" not in local_vars:
return {}
cls = local_vars["__class__"]
init_parameters = inspect.signature(cls.__init__).parameters
self_var, args_var, kwargs_var = parse_class_init_keys(cls)
filtered_vars = [n for n in (self_var, args_var, kwargs_var) if n]
exclude_argnames = (*filtered_vars, "__class__", "frame", "frame_args")
# only collect variables that appear in the signature
local_args = {k: local_vars[k] for k in init_parameters.keys()}
# kwargs_var might be None => raised an error by mypy
if kwargs_var:
local_args.update(local_args.get(kwargs_var, {}))
local_args = {k: v for k, v in local_args.items() if k not in exclude_argnames}
return local_args
def collect_init_args(
frame: types.FrameType, path_args: List[Dict[str, Any]], inside: bool = False
) -> List[Dict[str, Any]]:
"""Recursively collects the arguments passed to the child constructors in the inheritance tree.
Args:
frame: the current stack frame
path_args: a list of dictionaries containing the constructor args in all parent classes
inside: track if we are inside inheritance path, avoid terminating too soon
Return:
A list of dictionaries where each dictionary contains the arguments passed to the
constructor at that level. The last entry corresponds to the constructor call of the
most specific class in the hierarchy.
"""
_, _, _, local_vars = inspect.getargvalues(frame)
# frame.f_back must be of a type types.FrameType for get_init_args/collect_init_args due to mypy
if not isinstance(frame.f_back, types.FrameType):
return path_args
if "__class__" in local_vars:
local_args = get_init_args(frame)
# recursive update
path_args.append(local_args)
return collect_init_args(frame.f_back, path_args, inside=True)
if not inside:
return collect_init_args(frame.f_back, path_args, inside)
return path_args
def flatten_dict(source: Dict[str, Any], result: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
if result is None:
result = {}
for k, v in source.items():
if isinstance(v, dict):
_ = flatten_dict(v, result)
else:
result[k] = v
return result
def save_hyperparameters(
obj: Any, *args: Any, ignore: Optional[Union[Sequence[str], str]] = None, frame: Optional[types.FrameType] = None
) -> None:
"""See :meth:`~pytorch_lightning.LightningModule.save_hyperparameters`"""
if len(args) == 1 and not isinstance(args, str) and not args[0]:
# args[0] is an empty container
return
if not frame:
current_frame = inspect.currentframe()
# inspect.currentframe() return type is Optional[types.FrameType]: current_frame.f_back called only if available
if current_frame:
frame = current_frame.f_back
if not isinstance(frame, types.FrameType):
raise AttributeError("There is no `frame` available while being required.")
if is_dataclass(obj):
init_args = {f.name: getattr(obj, f.name) for f in fields(obj)}
else:
init_args = {}
for local_args in collect_init_args(frame, []):
init_args.update(local_args)
assert init_args, "failed to inspect the obj init"
if ignore is not None:
if isinstance(ignore, str):
ignore = [ignore]
if isinstance(ignore, (list, tuple)):
ignore = [arg for arg in ignore if isinstance(arg, str)]
init_args = {k: v for k, v in init_args.items() if k not in ignore}
if not args:
# take all arguments
hp = init_args
obj._hparams_name = "kwargs" if hp else None
else:
# take only listed arguments in `save_hparams`
isx_non_str = [i for i, arg in enumerate(args) if not isinstance(arg, str)]
if len(isx_non_str) == 1:
hp = args[isx_non_str[0]]
cand_names = [k for k, v in init_args.items() if v == hp]
obj._hparams_name = cand_names[0] if cand_names else None
else:
hp = {arg: init_args[arg] for arg in args if isinstance(arg, str)}
obj._hparams_name = "kwargs"
# `hparams` are expected here
if hp:
obj._set_hparams(hp)
# make deep copy so there is not other runtime changes reflected
obj._hparams_initial = copy.deepcopy(obj._hparams)
Structured results (train loop only. val loop separate PR) (PR 2/5) (#2615) * r * r * r * patched optimizer closure with sr * patched optimizer closure with sr * patched optimizer closure with sr * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added autoreduce for train step * added auto reduce on train * added auto reduce on train * added auto reduce on train * added auto reduce on train * added auto reduce on train * added auto reduce on train * added hooks * added hooks * added hooks * added hooks * added hooks * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * cache * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * Update pytorch_lightning/callbacks/early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/model_checkpoint.py * Update pytorch_lightning/core/step_result.py * finished tests for structured results on train epoch * finished tests for structured results on train epoch * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com> * Apply suggestions from code review Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com> * Apply suggestions from code review Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com> * simple * finished tests for structured results on train epoch * simple * simple * revert * finished tests for structured results on train epoch * finished tests for structured results on train epoch * Update tests/base/deterministic_model.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * finished tests for structured results on train epoch * docstring typos * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * Update pytorch_lightning/core/step_result.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update pytorch_lightning/overrides/data_parallel.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com>
2020-07-20 23:00:20 +00:00
class AttributeDict(Dict):
"""Extended dictionary accessible with dot notation.
>>> ad = AttributeDict({'key1': 1, 'key2': 'abc'})
>>> ad.key1
1
>>> ad.update({'my-key': 3.14})
>>> ad.update(new_key=42)
>>> ad.key1 = 2
>>> ad
"key1": 2
"key2": abc
"my-key": 3.14
"new_key": 42
"""
def __getattr__(self, key: str) -> Optional[Any]:
try:
return self[key]
except KeyError as exp:
raise AttributeError(f'Missing attribute "{key}"') from exp
def __setattr__(self, key: str, val: Any) -> None:
self[key] = val
def __repr__(self) -> str:
if not len(self):
return ""
max_key_length = max(len(str(k)) for k in self)
tmp_name = "{:" + str(max_key_length + 3) + "s} {}"
rows = [tmp_name.format(f'"{n}":', self[n]) for n in sorted(self.keys())]
out = "\n".join(rows)
return out
def _lightning_get_all_attr_holders(model: "pl.LightningModule", attribute: str) -> List[Any]:
"""Special attribute finding for Lightning.
Gets all of the objects or dicts that holds attribute. Checks for attribute in model namespace, the old hparams
namespace/dict, and the datamodule.
"""
trainer = getattr(model, "trainer", None)
holders: List[Any] = []
# Check if attribute in model
if hasattr(model, attribute):
holders.append(model)
# Check if attribute in model.hparams, either namespace or dict
if hasattr(model, "hparams"):
if attribute in model.hparams:
holders.append(model.hparams)
# Check if the attribute in datamodule (datamodule gets registered in Trainer)
if trainer is not None and trainer.datamodule is not None and hasattr(trainer.datamodule, attribute):
holders.append(trainer.datamodule)
return holders
def _lightning_get_first_attr_holder(model: "pl.LightningModule", attribute: str) -> Optional[Any]:
"""Special attribute finding for Lightning.
Gets the object or dict that holds attribute, or None. Checks for attribute in model namespace, the old hparams
namespace/dict, and the datamodule, returns the last one that has it.
2021-02-04 17:55:45 +00:00
"""
holders = _lightning_get_all_attr_holders(model, attribute)
if len(holders) == 0:
return None
# using the last holder to preserve backwards compatibility
return holders[-1]
def lightning_hasattr(model: "pl.LightningModule", attribute: str) -> bool:
"""Special hasattr for Lightning.
Checks for attribute in model namespace, the old hparams namespace/dict, and the datamodule.
"""
return _lightning_get_first_attr_holder(model, attribute) is not None
def lightning_getattr(model: "pl.LightningModule", attribute: str) -> Optional[Any]:
"""Special getattr for Lightning. Checks for attribute in model namespace, the old hparams namespace/dict, and
the datamodule.
Raises:
AttributeError:
If ``model`` doesn't have ``attribute`` in any of
model namespace, the hparams namespace/dict, and the datamodule.
"""
holder = _lightning_get_first_attr_holder(model, attribute)
if holder is None:
raise AttributeError(
f"{attribute} is neither stored in the model namespace"
" nor the `hparams` namespace/dict, nor the datamodule."
2021-02-04 17:55:45 +00:00
)
if isinstance(holder, dict):
return holder[attribute]
return getattr(holder, attribute)
def lightning_setattr(model: "pl.LightningModule", attribute: str, value: Any) -> None:
"""Special setattr for Lightning. Checks for attribute in model namespace and the old hparams namespace/dict.
Will also set the attribute on datamodule, if it exists.
Raises:
AttributeError:
If ``model`` doesn't have ``attribute`` in any of
model namespace, the hparams namespace/dict, and the datamodule.
"""
holders = _lightning_get_all_attr_holders(model, attribute)
if len(holders) == 0:
raise AttributeError(
f"{attribute} is neither stored in the model namespace"
" nor the `hparams` namespace/dict, nor the datamodule."
2021-02-04 17:55:45 +00:00
)
for holder in holders:
if isinstance(holder, dict):
holder[attribute] = value
else:
setattr(holder, attribute, value)