2021-04-16 11:38:57 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
r"""
|
|
|
|
Timer
|
|
|
|
^^^^^
|
|
|
|
"""
|
|
|
|
import logging
|
|
|
|
import time
|
|
|
|
from datetime import timedelta
|
|
|
|
from typing import Any, Dict, Optional, Union
|
|
|
|
|
|
|
|
import pytorch_lightning as pl
|
|
|
|
from pytorch_lightning.callbacks.base import Callback
|
|
|
|
from pytorch_lightning.trainer.states import RunningStage
|
|
|
|
from pytorch_lightning.utilities import LightningEnum
|
|
|
|
from pytorch_lightning.utilities.distributed import rank_zero_info
|
|
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
|
|
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
class Interval(LightningEnum):
|
|
|
|
step = "step"
|
|
|
|
epoch = "epoch"
|
|
|
|
|
|
|
|
|
|
|
|
class Timer(Callback):
|
2021-09-06 12:49:09 +00:00
|
|
|
"""The Timer callback tracks the time spent in the training, validation, and test loops and interrupts the
|
|
|
|
Trainer if the given time limit for the training loop is reached.
|
2021-04-16 11:38:57 +00:00
|
|
|
|
|
|
|
Args:
|
|
|
|
duration: A string in the format DD:HH:MM:SS (days, hours, minutes seconds), or a :class:`datetime.timedelta`,
|
|
|
|
or a dict containing key-value compatible with :class:`~datetime.timedelta`.
|
|
|
|
interval: Determines if the interruption happens on epoch level or mid-epoch.
|
|
|
|
Can be either ``"epoch"`` or ``"step"``.
|
|
|
|
verbose: Set this to ``False`` to suppress logging messages.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
MisconfigurationException:
|
|
|
|
If ``interval`` is not one of the supported choices.
|
|
|
|
|
|
|
|
Example::
|
|
|
|
from pytorch_lightning import Trainer
|
|
|
|
from pytorch_lightning.callbacks import Timer
|
|
|
|
|
|
|
|
# stop training after 12 hours
|
|
|
|
timer = Timer(duration="00:12:00:00")
|
|
|
|
|
|
|
|
# or provide a datetime.timedelta
|
|
|
|
from datetime import timedelta
|
|
|
|
timer = Timer(duration=timedelta(weeks=1))
|
|
|
|
|
|
|
|
# or provide a dictionary
|
|
|
|
timer = Timer(duration=dict(weeks=4, days=2))
|
|
|
|
|
|
|
|
# force training to stop after given time limit
|
|
|
|
trainer = Trainer(callbacks=[timer])
|
|
|
|
|
|
|
|
# query training/validation/test time (in seconds)
|
|
|
|
timer.time_elapsed("train")
|
|
|
|
timer.start_time("validate")
|
|
|
|
timer.end_time("test")
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
duration: Optional[Union[str, timedelta, Dict[str, int]]] = None,
|
|
|
|
interval: str = Interval.step,
|
|
|
|
verbose: bool = True,
|
|
|
|
) -> None:
|
|
|
|
super().__init__()
|
|
|
|
if isinstance(duration, str):
|
|
|
|
dhms = duration.strip().split(":")
|
|
|
|
dhms = [int(i) for i in dhms]
|
|
|
|
duration = timedelta(days=dhms[0], hours=dhms[1], minutes=dhms[2], seconds=dhms[3])
|
|
|
|
if isinstance(duration, dict):
|
|
|
|
duration = timedelta(**duration)
|
|
|
|
if interval not in set(Interval):
|
|
|
|
raise MisconfigurationException(
|
|
|
|
f"Unsupported parameter value `Timer(interval={interval})`. Possible choices are:"
|
|
|
|
f" {', '.join(set(Interval))}"
|
|
|
|
)
|
|
|
|
self._duration = duration.total_seconds() if duration is not None else None
|
|
|
|
self._interval = interval
|
|
|
|
self._verbose = verbose
|
|
|
|
self._start_time = {stage: None for stage in RunningStage}
|
|
|
|
self._end_time = {stage: None for stage in RunningStage}
|
|
|
|
self._offset = 0
|
|
|
|
|
|
|
|
def start_time(self, stage: str = RunningStage.TRAINING) -> Optional[float]:
|
|
|
|
"""Return the start time of a particular stage (in seconds)"""
|
|
|
|
stage = RunningStage(stage)
|
|
|
|
return self._start_time[stage]
|
|
|
|
|
|
|
|
def end_time(self, stage: str = RunningStage.TRAINING) -> Optional[float]:
|
|
|
|
"""Return the end time of a particular stage (in seconds)"""
|
|
|
|
stage = RunningStage(stage)
|
|
|
|
return self._end_time[stage]
|
|
|
|
|
|
|
|
def time_elapsed(self, stage: str = RunningStage.TRAINING) -> float:
|
|
|
|
"""Return the time elapsed for a particular stage (in seconds)"""
|
|
|
|
start = self.start_time(stage)
|
|
|
|
end = self.end_time(stage)
|
|
|
|
offset = self._offset if stage == RunningStage.TRAINING else 0
|
|
|
|
if start is None:
|
|
|
|
return offset
|
|
|
|
if end is None:
|
|
|
|
return time.monotonic() - start + offset
|
|
|
|
return end - start + offset
|
|
|
|
|
|
|
|
def time_remaining(self, stage: str = RunningStage.TRAINING) -> Optional[float]:
|
|
|
|
"""Return the time remaining for a particular stage (in seconds)"""
|
|
|
|
if self._duration is not None:
|
|
|
|
return self._duration - self.time_elapsed(stage)
|
|
|
|
|
|
|
|
def on_train_start(self, *args, **kwargs) -> None:
|
|
|
|
self._start_time[RunningStage.TRAINING] = time.monotonic()
|
|
|
|
|
|
|
|
def on_train_end(self, *args, **kwargs) -> None:
|
|
|
|
self._end_time[RunningStage.TRAINING] = time.monotonic()
|
|
|
|
|
|
|
|
def on_validation_start(self, *args, **kwargs) -> None:
|
|
|
|
self._start_time[RunningStage.VALIDATING] = time.monotonic()
|
|
|
|
|
|
|
|
def on_validation_end(self, *args, **kwargs) -> None:
|
|
|
|
self._end_time[RunningStage.VALIDATING] = time.monotonic()
|
|
|
|
|
|
|
|
def on_test_start(self, *args, **kwargs) -> None:
|
|
|
|
self._start_time[RunningStage.TESTING] = time.monotonic()
|
|
|
|
|
|
|
|
def on_test_end(self, *args, **kwargs) -> None:
|
|
|
|
self._end_time[RunningStage.TESTING] = time.monotonic()
|
|
|
|
|
2021-07-26 11:37:35 +00:00
|
|
|
def on_train_batch_end(self, trainer: "pl.Trainer", *args, **kwargs) -> None:
|
2021-04-16 11:38:57 +00:00
|
|
|
if self._interval != Interval.step or self._duration is None:
|
|
|
|
return
|
|
|
|
self._check_time_remaining(trainer)
|
|
|
|
|
2021-07-26 11:37:35 +00:00
|
|
|
def on_train_epoch_end(self, trainer: "pl.Trainer", *args, **kwargs) -> None:
|
2021-04-16 11:38:57 +00:00
|
|
|
if self._interval != Interval.epoch or self._duration is None:
|
|
|
|
return
|
|
|
|
self._check_time_remaining(trainer)
|
|
|
|
|
|
|
|
def on_save_checkpoint(
|
2021-07-26 11:37:35 +00:00
|
|
|
self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", checkpoint: Dict[str, Any]
|
2021-04-16 11:38:57 +00:00
|
|
|
) -> Dict[str, Any]:
|
|
|
|
return {"time_elapsed": {stage.value: self.time_elapsed(stage) for stage in list(RunningStage)}}
|
|
|
|
|
2021-08-22 05:48:28 +00:00
|
|
|
def on_load_checkpoint(
|
|
|
|
self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", callback_state: Dict[str, Any]
|
|
|
|
) -> None:
|
2021-04-16 11:38:57 +00:00
|
|
|
time_elapsed = callback_state.get("time_elapsed", {})
|
|
|
|
self._offset = time_elapsed.get(RunningStage.TRAINING.value, 0)
|
|
|
|
|
2021-07-26 11:37:35 +00:00
|
|
|
def _check_time_remaining(self, trainer: "pl.Trainer") -> None:
|
2021-04-16 11:38:57 +00:00
|
|
|
should_stop = self.time_elapsed() >= self._duration
|
2021-09-27 12:52:57 +00:00
|
|
|
should_stop = trainer.training_type_plugin.broadcast(should_stop)
|
2021-04-16 11:38:57 +00:00
|
|
|
trainer.should_stop = trainer.should_stop or should_stop
|
|
|
|
if should_stop and self._verbose:
|
2021-05-31 12:50:16 +00:00
|
|
|
elapsed = timedelta(seconds=int(self.time_elapsed(RunningStage.TRAINING)))
|
|
|
|
rank_zero_info(f"Time limit reached. Elapsed time is {elapsed}. Signaling Trainer to stop.")
|